考虑分层梯度的筒状蜂窝基座隔振性能研究

黄江成1,肖正明1,刘涛1,刘卫标2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 13-20.

PDF(2407 KB)
PDF(2407 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 13-20.
论文

考虑分层梯度的筒状蜂窝基座隔振性能研究

  • 黄江成1,肖正明1,刘涛1,刘卫标2
作者信息 +

Vibration isolation performance of cylindrical honeycomb base considering layered gradient

  • HUANG Jiangcheng1, XIAO Zhengming1, LIU Tao1, LIU Weibiao2
Author information +
文章历史 +

摘要

多孔蜂窝具有良好的吸能隔振特性,但是传统蜂窝基座主要研究其均匀参数的增加或减少对隔振性能的影响,且易出现应力集中、面内刚度低承载能力差的缺陷。为此提出了一种圆筒状蜂窝基座,分析了筒状蜂窝基座抗变形能力,通过优化软件内置序列二次规划算法,在满足一定的隔振性能前提下,优化出合理的基座设计参数。基于优化得到的基座参数进行了分层梯度设计,分别以胞元壁厚、内凹角度为自变量,设计了顺厚度梯度、逆厚度梯度、顺角度梯度、逆角度梯度的蜂窝层,在确保基座质量体积不变的前提下,讨论了分层梯度设计对基座隔振性能的影响。结果表明:圆筒状蜂窝基座较之于规则方形基座其比刚度更高,承载能力更强,厚度梯度的设计较之均匀参数设计隔振性能有所提升,逆厚度梯度设计隔振效果最佳,角度梯度设计对隔振性能影响不明显。

Abstract

The porous honeycomb has good energy absorption and vibration isolation characteristics. However, the research on traditional honeycomb base is mainly focused on the effect of increasing or decreasing uniform parameters on vibration isolation performance, which is prone to the defects of stress concentration and low in-plane stiffness and poor bearing capacity. Therefore, in this study, we propose a cylindrical honeycomb base and analyze its non-deformability resistance through simulation. on the premise of satisfying certain vibration isolation performance, reasonable design parameters of the base can be optimized by optimizing the sequential quadratic programming algorithm built into the software, and then conduct hierarchical gradient design based on the optimized base parameters. The hierarchical gradient design is based on the constant mass volume of the base and taking cell wall thickness and concave angle as independent variables to design the honeycomb layer with the pathwise thickness gradient, the inverse thickness gradient, the pathwise angle gradient, the inverse angle gradient. The results show that the cylindrical honeycomb base has higher specific stiffness and stronger bearing capacity compared with the regular square base. In addition, this study also indicate that compared with uniform parameter design, thickness gradient design has better vibration isolation performance, inverse thickness gradient design has the best vibration isolation effect, and angle gradient design has no obvious influence on vibration isolation performance.

关键词

分层梯度 / 筒状蜂窝基座 / 优化设计 / 隔振性能

Key words

Stratification gradient / Cylindrical honeycomb base / Optimization design / Performance of vibration isolation

引用本文

导出引用
黄江成1,肖正明1,刘涛1,刘卫标2. 考虑分层梯度的筒状蜂窝基座隔振性能研究[J]. 振动与冲击, 2023, 42(5): 13-20
HUANG Jiangcheng1, XIAO Zhengming1, LIU Tao1, LIU Weibiao2. Vibration isolation performance of cylindrical honeycomb base considering layered gradient[J]. Journal of Vibration and Shock, 2023, 42(5): 13-20

参考文献

[1] Zarastvand M R, Asadijafari M H, Talebitooti R. Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation[J]. Aerospace Science and Technology, 2021, 112: 106620.
[2] Banerjee S ,  Bhaskar A . Free vibration of cellular structures using continuum modes[J]. Journal of Sound and Vibration, 2005, 287(1-2):77-100.
[3]  Hayes A M ,  Wang A ,  Dempsey B M , et al. Mechanics of linear cellular alloys[J]. Mechanics of Materials, 2004, 36(8):691-713.
[4] Valeev A. Designing Metamaterial with Arc-Structure for Wide Broad Vibration Isolating[J]. Solid State Phenomena, 2017,4503:592-597.
[5] Liu K, Hu W X , Ji L T, et al. 4D printed zero Poisson's ratio metamaterial with switching function of mechanical and vibration isolation performance[J]. Materials & Design, 2020, 196.
[6] 张相闻,杨德庆.船用新型抗冲击隔振蜂窝基座[J].振动与冲击,2015,34(10):40-45.
    ZHANG Xiang-wen, YANG De-qing.  A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015,34(10): 40-45.
[7] 张相闻,杨德庆,吴广明.综合考虑减振与抗冲击性能的复合基座设计方法[J].振动与冲击,2016,35(20):130-136.
ZHANG Xiang-wen,YANG De-qing,WU Guang-ming. A    vibration and shock isolation synthesis design method for    hybrid  base [J]. Journal of Vibration and Shock, 2016,35(20): 130-136.
[8] 秦浩星,杨德庆,张相闻.负泊松比声学超材料基座的减振性能研究[J].振动工程学报,2017,30(06):1012-1021.
QIN Hao-xing,YANG De-qing,ZHANG Xiang-wen. Vibration reduction of auxetic acoustic metamaterial mount  [J].Journal of Vibration Engineering,2017,30(06): 1012-1021.
[9] 秦浩星,杨德庆.声子晶体负泊松比蜂窝基座的减振机理研究[J].振动工程学报,2019,32(03):421-430.
    QIN Hao-xing, YANG De-qing.  Vibration reduction       mechanism for phononic crystal cell ular mount with auxetic  effect[J]. Journal of Vibration Engineering,2019,32(03):421-430.
[10] 刘颖,何章权,吴鹤翔,等.分层递变梯度蜂窝材料的面内冲击性能[J].爆炸与冲击,2011,31(03):225-231.
    LIU Yin,HE Zhang-quan,WU He-xiang,et al. In-plane dynamic crushing of functionally layered metal honeycombs[J].Explosion and Shock Waves, 2011, 31(03):  225-231.
[11] 吴鹤翔,刘颖.梯度分布对密度梯度金属空心球阵列动力学性能的影响[J].工程力学,2013,30(01):425-431.
WU He-xiang, LIU Yin. The influence of gradient profile on the dynamic properties of density graded metal hollow sphere arrays [J]. Engineering Mechanics, 2013, 30(1): 425–431.
[12] 李谱,乐京霞,李晓彬,等.厚度梯度型箭形负泊松比蜂窝基座抗冲击性能[J].爆炸与冲击,2020,40(07):27-37.
    LI Pu,LE Jing-xia,LI Xiao-bin,et al. Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio[J].Explosion and Shock Waves, 2020,40(07):27-37.
[13] 李坚,孟卫华,张大海,等.分层密度梯度蜂窝材料面内动态压缩及吸能特性[J].应用力学学报, 2021, 38(06):2369-2375.
LI Jian,MENG Wei-hua,ZHANG Da-hai,et al. Dynamic crushing behavior and energy absorption of hexagonal honeycomb material with layered density gradient[J].Chinese journal of applied mechanics, 2021, 38(06): 2369-2375.
[14] Li Q , Yang D Q. Vibro-acoustic performance and design of annular cellular structures with graded auxetic mechanical metamaterials[J]. Journal of Sound and Vibration , 2020,  466(C): 115038.
[15] Li Q , Yang D Q. Vibration and Sound Transmission Performance of Sandwich Panels with Uniform and Gradient Auxetic Double Arrowhead Honeycomb Cores[J]. Shock and Vibration, 2019, 2019:1-16.
[16] Ajdari A, Canavan P, Nayeb-Hashemi H, et al.   Mechanical properties of functionally graded 2-D cellular structures: a  finite  element  simulation[J].Materials  Scienceand    Engineering:  A,  2009,  499(1−2): 434–439.
[17] Liang C, Kiernan S, Gilchrist M D. Designing the   energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1−2): 215–225.
[18] 张相闻. 船舶宏观负泊松比效应蜂窝减振及防护结构设计方法研究[D].上海交通大学,2017.
ZHANG Xiang-wen. Research on design methods of auxetic cellular structures for vibration reduction and defensive structures of ships[D]. Shanghai Jiao Tong University, 2017.
[19] 秦浩星. 任意泊松比超材料及其船体减振设计理论与方法[D].上海交通大学,2019.
    QIN Hao-xing, Design theory and methods of arbitrary poisson's ratio metamaterials and application in hull vibration reduction[D]. Shanghai Jiao Tong University, 2019.
[20] 张梗林,杨德庆.船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J].振动与冲击,2013,32(22):68-72+78.
    ZHANG Geng-lin,YANG De-qing.  Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013,32(22):68-72+78.

PDF(2407 KB)

Accesses

Citation

Detail

段落导航
相关文章

/