基于自适应模型的在役斜拉桥时变力学性能追踪

孙华怀1,徐俊2,陈惟珍2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 190-199.

PDF(3494 KB)
PDF(3494 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 190-199.
论文

基于自适应模型的在役斜拉桥时变力学性能追踪

  • 孙华怀1,徐俊2,陈惟珍2
作者信息 +

Time-varying mechanical properties tracking of in-service cable-stayed bridge based on adaptive model

  • SUN Huahuai1, XU Jun2, CHEN Weizhen2
Author information +
文章历史 +

摘要

由于结构复杂、影响因素众多,斜拉桥初始有限元模型不能准确反映实际结构,且服役阶段斜拉桥力学性能持续退化。因此,建立反映斜拉桥真实状态的数值模型是追踪其时变力学性能的关键。故本研究提出基于自适应模型的在役斜拉桥时变力学性能追踪方法。首先根据成桥时拉索实测索力,采用多目标优化法修正斜拉桥成桥时有限元模型。基于修正后的成桥有限元模型,考虑服役阶段混凝土收缩、徐变和环境温度效应,采用有限元逐步分析法数值追踪在役斜拉桥时变力学性能。利用所提出的方法数值评估海河大桥服役1年和2年后时变力学性能,并对该桥实际力学性能进行周期性现场检测。研究结果表明,服役1年和2年后,全桥索力数值结果与现场检测值的相对差异始终保持在10%之内,主梁挠度数值结果和实测值最大差异分别为-0.025 m和-0.013 m。因此,斜拉桥自适应模型能够有效地追踪在役斜拉桥时变力学性能。在服役阶段,该混合梁斜拉桥主跨主梁挠度逐渐增大,边跨主梁挠度变化很小。

Abstract

Due to the complex structure and many influencing factors, the initial finite element model of a cable-stayed bridge cannot accurately reflect the actual structure, and the mechanical properties of cable-stayed bridge continue to deteriorate in service. Therefore, establishing a numerical model reflecting the real state of a cable-stayed bridge is the key to track its time-varying mechanical properties. In this study, a method is proposed to track time-varying mechanical properties of an in-service cable-stayed bridges based on an adaptive model. Firstly, with the measured cable forces at the completion stage, multi-objective optimization method is adopted to update the finite element model of a cable-stayed bridge. Based on the updated finite element model, the step-by-step finite element method is used to numerically track time-varying mechanical properties of an in-service cable-stayed bridge with concrete shrinkage, creep and ambient temperature effects. The proposed method is used to numerically evaluate the time-varying mechanical properties of Haihe Bridge after one and two years of service. The actual mechanical properties of the bridge are inspected regularly. The results show that the relative differences between the numerical results and the measured cable forces after 1 and 2 years of service remain within ±10%. The maximum differences between the numerical results of girder deflections and the measured values are -0.025 m and -0.013 m, separately. Thus, the adaptive model can effectively track time-varying mechanical properties of in-service cable-stayed bridges. In the service stage, the deflection of the main span girder of the hybrid girder cable-stayed bridge gradually increases, and the changes of deflection in the side span girder was very small.

关键词

在役斜拉桥 / 时变力学性能 / 自适应模型 / 模型修正 / 收缩徐变 / 环境温度

Key words

in-service cable-stayed bridges / time-varying mechanical properties / adaptive model / model updating / concrete shrinkage and creep / ambient temperature

引用本文

导出引用
孙华怀1,徐俊2,陈惟珍2. 基于自适应模型的在役斜拉桥时变力学性能追踪[J]. 振动与冲击, 2023, 42(5): 190-199
SUN Huahuai1, XU Jun2, CHEN Weizhen2. Time-varying mechanical properties tracking of in-service cable-stayed bridge based on adaptive model[J]. Journal of Vibration and Shock, 2023, 42(5): 190-199

参考文献

[1] 黄娟. 预应力混凝土斜拉桥长期荷载作用下时变效应分析[M]. 北京: 人民交通出版社, 2012.
  Huang J. Analysis of Time-dependent Effect on PC Cable-stayed Bridge under Long-term Load[M]. Beijing: China Communications Press, 2012.
[2] 戴航, 袁爱民. 基于灵敏度分析的结构模型修正[M]. 北京: 科学出版社, 2011.
  Dai H, Yuan A M. Structural model updating based on sensitivity analysis[M]. Beijing: Science Press, 2011.
[3] Wang F Y, Xu Y L, Sun B, et al. Updating Multiscale Model of a Long-Span Cable-Stayed Bridge[J]. Journal of Bridge Engineering, 2018, 23(3), 04017148.
[4] 熊文, 鲁圣弟, 席进, 等. 基于索力模型修正的斜拉桥主梁损伤识别与验证[J]. 东南大学学报(自然科学版), 2019, 49(3): 467-473.
  Xiong W, Lu S D, Xi J, et al. Main girder damage detection and verification of cable-stayed bridges based on cable force model updating[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(3): 467-473.
[5] Jang J, Smyth A W. Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters[J]. Mechanical Systems & Signal Processing, 2017, 83(jan.): 337-355.
[6] 方志, 张国刚, 唐盛华, 等. 混凝土斜拉桥动力有限元建模与模型修正[J]. 中国公路学报, 2013, 26(03): 81-89.
  Fang Z, Zhang G G, Tang S H, et al. Finite element Modeling and Model Updating of Concrete Cable-stayed Bridge[J]. China Journal of Highway and Transport, 2013, 26(03): 81-89.
[7] Xiao X, Xu Y L, Zhu Q. Multiscale modeling and model updating of a cable-stayed bridge. II: Model updating using modal frequencies and influence lines[J]. Journal of Bridge Engineering, 2015, 20(10), 04014113.
[8] 李志刚, 阳霞, 任伟新. 一座异形斜拉桥的动力有限元模型与验证[J]. 振动与冲击, 2017, 36(12): 55-60.
  Li Z G, Yang X, Ren W X. Dynamic finite element model and validation of a special•shaped cable-stayed bridge[J]. Journal of Vibration and Shock, 2017, 36(12): 55-60.
[9] Sanayei M, Phelps J E, Sipple J D, et al. Instrumentation, Nondestructive Testing, and Finite-Element Model Updating for Bridge Evaluation Using Strain Measurements[J]. Journal of Bridge Engineering, 2012, 17(1): 130-138.
[10] Jaishi B, Ren W X. Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2295-2317.
[11] 彭涛, 田仲初, 张建仁, 等. 基于多目标优化的混凝土斜拉桥静动力有限元模型修正[J]. 振动与冲击, 2018, 37(21): 116-124.
  Peng T, Tian Z C, Zhang J R, et al. Static and dynamic finite element model updating for a concrete cable-stayed bridge based on multi-objective optimization[J]. Journal of Vibration and Shock, 2018, 37(21): 116-124.
[12] Qin S, Zhou Y L, Cao H, et al. Model updating in complex bridge structures using kriging model ensemble with genetic algorithm[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3567-3578.
[13] Shabbir F, Omenzetter P. Model updating using genetic algorithms with sequential niche technique[J]. Engineering Structures, 2016, 120, 166-182.
[14] 单德山, 顾晓宇, 李中辉, 等. 桥梁结构有限元模型的仿射-区间不确定修正[J]. 中国公路学报, 2019, 32(02): 67-76.
  Shan D S, Gu X Y, Li Z H, et al. Affine-interval Uncertainty Updating of Finite Element Model for Cable-stayed Bridge[J]. China Journal of Highway and Transport, 2019, 32(02): 67-76.
[15] Park Y S, Kim S, Kim N, et al. Finite element model updating considering boundary conditions using neural networks[J]. Engineering Structures, 2017, 150(nov.1): 511-519.
[16] Qin S, Zhang Y, Zhou Y L, Kang J. Dynamic model updating for bridge structures using the kriging model and PSO algorithm ensemble with higher vibration modes[J]. Sensors, 2018, 18(6), 1879.
[17] 颜东煌, 田仲初, 李学文, 等. 混凝土桥梁收缩徐变计算的有限元方法与应用[J]. 中国公路学报, 2004, 17(02): 55-58.
  Yan D H, Tian Z C, Li X W, et al. Finite element method and application for the shrinkage and creep of concrete bridges[J]. China Journal of Highway and Transport, 2004, 17(02): 55-58.
[18] Au F, Si X T. Accurate time-dependent analysis of concrete bridges considering concrete creep, concrete shrinkage and cable relaxation[J]. Engineering Structures, 2011, 33(1): 118-126.
[19] 陈素君, 唐盛华, 张国刚, 等. 混凝土斜拉桥长期性能试验[J]. 中国公路学报, 2011, 24(04): 39-49.
  Chen S J, Tang S H, Zhang G G, et al. Experiment on Long-term Performance of Concrete Cable-stayed Bridge[J]. China Journal of Highway and Transport, 2011, 24(04): 39-49.
[20] 姚亚东, 么超逸, 杨永清. 铁路斜拉桥钢混结合段的收缩徐变行为分析[J]. 铁道学报, 2020, 42(7): 148-154.
  Yao Y D, Yao C Y, Yang Y Q. Time-dependent Creep and Shrinkage Analysis of Steel-concrete Composite Segment of Cable-stayed Railway Bridge[J]. Journal of the China Railway Society, 2020, 42(7): 148-154.
[21] Si X T, Au F, Li Z H. Capturing the long-term dynamic properties of concrete cable-stayed bridges[J]. Engineering Structures, 2013, 57(4): 502-511.
[22] Lozano-Galant J A, Turmo J. Creep and shrinkage effects in service stresses of concrete cable-stayed bridges[J]. Computers and Concrete. 2014, 13(4): 483–499.
[23] Martins A, Simões L, Negrão J. Optimization of concrete cable-stayed bridges under seismic action[J]. Computers & Structures, 2019, 222: 36-47.
[24] Sun H H, Chen W Z, Cai S Y, et al. Mechanical state assessment of in-service cable-stayed bridge using a two-phase model updating technology and periodic field measurements[J]. Journal of Bridge Engineering, 2020, 25(5), 04020015.
[25] Sun H H, Chen W Z, Cai S Y, et al. Tracking time-varying structural responses of in-service cable-stayed bridges with model parameter errors and concrete time-dependent effects[J]. Structures, 37, 2022, 819-832.

PDF(3494 KB)

263

Accesses

0

Citation

Detail

段落导航
相关文章

/