Test study on nonlinear mechanical properties of series isolation components
ZHAO Lijie1,2,3, JING Xuanguang2, DU Yongfeng3, SHEN Jinsheng1,2
Author information+
1.School of Architectural Engineering, Tianjin University, Tianjin 300072, China;
2.School of Civil Engineering, Hebei University of Engineering, Handan 056107, China;
3.Institute of Earthquake Prevention and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
As a combination of variable stiffness and strong nonlinear components, series isolation members are the most vulnerable and sensitive parts of column top isolation structures.In order to have a deeper understanding of the nonlinear mechanical properties of the series isolation members, this paper carried out pseudo-static loading tests on the series isolation members with different slenderness ratios and axial compression ratios, and analyzed the failure phenomenon and characteristics of the series isolation members with different slenderness ratios and axial compression ratios.The effects of slenderness ratio and axial pressure ratio on the horizontal stiffness, strength, force and displacement relations of series isolation components were analyzed, and the evolution law of mechanical properties of series isolation components caused by nonlinear cumulative damage under multiple real-time reciprocating loads was investigated. The analysis of test results shows that ductility, energy dissipation capacity and ultimate displacement of components are negatively correlated with slenderness ratio and axial compression ratio and show obvious nonlinear characteristics. The increase of slenderness ratio and axial compression ratio will cause damage and deterioration of some nonlinear mechanical properties such as horizontal stiffness and strength of series isolation components.
ZHAO Lijie1,2,3, JING Xuanguang2, DU Yongfeng3, SHEN Jinsheng1,2.
Test study on nonlinear mechanical properties of series isolation components[J]. Journal of Vibration and Shock, 2023, 42(5): 21-29
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨静,李大鹏,翟长海,等. 城市抗震韧性的研究现状及关键科学问题[J]. 中国科学基金, 2019, 33(05): 525-532.
YANG Jing, LI Dapeng, ZHAI Changhai, et al. Research status and key scientific issues of urban seismic toughness[J].Bulletin of National Natural Science Foundation of China,
2019, 33(05): 525-532.
[2] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复 性[J]. 工程力学, 2019, 36(06): 1-12.
ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: From earthquake resistance, energy disssiption, and isolation, to resilience[J]. Engineering Mechanics, 2019, 36(06): 1-12.
[3] 朱宏平, 沈文爱, 雷鹰, 等. 结构减隔震控制系统性能监测、评估与提升[J]. 工程力学, 2020, 37(01): 1-16.
ZHU Hongping, SHEN Wenai, LEI Ying, et al. Performance monitoring, evaluation and improvement of structural vibration mitigation or isolation systems[J]. Engineering Mechanics, 2020, 37(01): 1-16.
[4] 吴应雄, 黄净, 剑峰, 等. 考虑不同底层结构形式和刚度的柱顶隔震结构试验研究[J]. 应用基础与工程科学学报, 2017, 25(03): 521-534.
WU Yingxiong, HUANG Jing, JIAN Feng, et al. Experimental study on shock isolation structure of column top considering different structural forms and stiffness of bottom layer[J]. Journal of Basic Science and Engineering, 2017, 25(03): 521-534.
[5] 朱宏平, 谭平, 叶昆. 极罕遇地震作用下铅芯橡胶隔震支座基础隔震结构抗震性能研究[J]. 建筑结构学报, 2019, 40(10): 122-131.
ZHU Hongping, TAN Ping, YE Kun. Investigation of seismic performance of LRB base-isolated structures subjected to extremely rare earthquakes[J]. Journal of Building Structures,
2019, 40(10): 122-131.
[6] 武沛松, 王建, 欧进萍. 隔震建筑抗极罕遇地震能力与主要破坏模式分析[J]. 防灾减灾工程学报, 2020, 40(03): 317-325.
WU Peisong, WANG Jian, OU Jinping. Research and design of main failure modes of seismically isolated structures subjected to very-rare earthquakes[J]. Journal of Disaster
Prevention and Mitigation Engineering, 2020, 40(03):317-325.
[7] 邹蕊月, 郭军林, 李英民, 等. 两种村镇隔震结构动力特性强震演变规律的振动台试验对比研究[J]. 西安理工大学学报, 2019, 35(02): 234-241.
ZOU Ruiyue, GUO Junlin, LI Yingmin, et al. Shaking table test comparative study on the evolution law of dynamic characteristics in strong earthquake for two kinds of rural
isolation structure[J]. Journal of Xi'an University of Technology, 2019, 35(02): 234-241.
[8] 刘彦辉, 刘琳, 温留汉•黑沙, 等. 实时往复大变形下铅芯橡胶隔震支座力学性能试验研究[J]. 土木工程学报, 2018, 51(S1): 13-18.
LIU Yanhui, LIU Lin, WEN Liuhan•Heisha, et al.Experimental study on mechanical performance of lead rubber bearings underreal-time reciprocating large deformation[J]. China Civil Engineering Journal, 2018, 51(S1): 13-18.
[9] 张莉莉, 刘文光, 许浩, 等. 斜向三维隔震支座的非线性力学性能试验及数值模拟研究[J]. 工程力学, 2020, 37(11): 167-175.
ZHANG Lili, LIU Wenguang, XU Hao, et al. Experimental and numerical study on the nonlinear mechanical properties of oblique 3D isolation bearings[J]. Engineering Mechanics,
2020, 37(11): 167-175.
[10] Menga N, Bottiglione F, Carbone G. The nonlinear dynamic behavior of a Rubber-Layer Roller Bearing (RLRB) for vibration isolation[J]. Journal of Sound and Vibration, 2019, 463: 1-12.
[11] 金建敏, 肖骥, 刘彦辉, 等. 不同剪切变形下橡胶隔震支座竖向压缩刚度试验研究[J]. 振动与冲击, 2021, 40(06): 93-99.
JIN Jianmin, XIAO Ji, LIU Yanhui, et al. Experimental study on the vertical compressive stiffness of rubber isolation bearings under different shear deformation[J]. Journal of Vibration and Shock, 2021, 40(06): 93-99.
[12] 陈彦江, 郭凯敏, 李勇, 等. 桥梁高阻尼隔震橡胶支座性能试验研究[J]. 振动与冲击, 2015, 34(09): 136-140+148.
CHEN Yanjiang, GUO Kaimin, LI Yong, et al. Behavior of high damping seimsic isolation rubber bearings for bridges [J]. Journal of Vibration and Shock, 2015, 34(09): 136-140+
148.
[13] 杜永峰, 吴忠铁, 朱前坤. 基于试验的串联隔震体系非线性力学性能有限元分析[J]. 土木工程学报, 2015, 48(07): 20-29.
DU Yongfeng, WU Zhongtie, ZHU Qiankun. Finite element analysis of nonlinear mechanical behavior of series seismic isolation system based on tests[J]. China Civil Engineering
Journal, 2015, 48(07): 20-29.
[14] 杜永峰, 朱前坤, 李慧. 串联隔震体系的大变形力学行为分析与试验[J]. 振动与冲击, 2011, 30(11): 236-239.
DU Yongfeng, ZHU Qiankun, LI Hui. Analysis of large deformation behavior of series isolation system and its experimental verification[J]. Journal of Vibration and Shock, 2011, 30(11): 236-239.
[15] 赵丽洁, 林东钦, 杜永峰,等. 基于WMRA的隔震结构时变非线性参数识别[J]. 振动、测试与诊断, 2019, 39(03): 619-624.
ZHAO Lijie, LIN Dongqin, DU Yongfeng, et al. Time-varying nonlinear parameter identification of isolated structures based on WMRA[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(03): 619-624.
[16] GB50010-2010 混凝土结构设计规范[S].
[17] GB20688.3-2006 橡胶支座第3部分:建筑隔震支座橡胶支座[S].
[18] JGJ/T 101-2015 建筑抗震试验规程[S].