提出了一种截面插值梁模型,利用该模型求解梁在非均匀热载荷作用下的动静态响应,解决了传统梁理论无法处理受不均匀温度场的梁的问题。首先利用拉格朗日插值函数对梁单元的截面和轴向分别插值,构造梁的位移场。接着,将位移场代入热弹性动力学方程,得到单元应变和应力,再依据虚功原理推导出单元刚度矩阵、质量矩阵以及等效节点载荷列阵,求解得到热应力。最后利用热应力的横向剪切力更新单元刚度矩阵,计算梁在热载荷作用下的振动特性。计算结果表明,本文方法得到的结果与实体单元模型结果吻合,并且更易于处理受非均匀热载荷作用的细长结构,同时能很好地反映截面的形状、受载及响应结果。
Abstract
A cross-section interpolation beam model was proposed to solve the dynamic and static response of the beam under nonuniform thermal load. It solved the problem that the traditional beam theory cannot deal with the beam subjected to nonuniform temperature field. Firstly, the Lagrange interpolation function was used to interpolate the section and axial of the beam element to construct the displacement field of the beam. Then, the displacement field was substituted into the thermoelastic dynamic equation, and the element strain and stress were obtained. According to the principle of virtual work, the element stiffness matrix, mass matrix and equivalent node load array were derived, and the thermal stress was solved. Finally, the element stiffness matrix was updated by the transverse shear force of thermal stress to calculate the vibration characteristics of the beam under thermal load. The calculation results showed that the results obtained by the method in this paper are consistent with the results of the solid element model, and it is easier to deal with the slender structure under non-uniform thermal load, and can well reflect the shape, load and response results of the cross section.
关键词
空间梁模型 /
截面插值 /
截面变形 /
静力计算 /
热模态分析
{{custom_keyword}} /
Key words
spatial beam model /
cross-section interpolations /
cross-section deformation /
static calculation /
thermal modal analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5):935-988.
[2] 李录贤, 裴永乐, 段铁城, 等. Timoshenko梁理论的物理本质及与Euler梁理论的关系研究[J]. 中国科学:技术科学, 2018, 48(4):360-368.
LI LuXian, PEI YongLe, DUAN TieCheng, et al. Study on physical essence of the Timoshenko beam theory and its relation with the Euler beam theory[J]. Scientia Sinica(Technologica), 2018, 48(4): 360-368.
[3] Newmark N M, Siess C P, Viest I M. Test and analysis of composite beams with incomplete interaction[J]. Proceedings of the Society for Experimental Stress Analysis, 1951, 9(1):75-92.
[4] Levinson M. A new rectangular beam theory[J]. Journal of Sound and Vibration,1981,74(1):81-87.
[5] LI X F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams[J]. Journal of Sound and Vibration, 2008, 318(4/5):1210-1229.
[6] 周倩南. 基于位移变形理论的空间梁模型分析与研究[D]. 杭州: 浙江大学, 2015.
ZHOU QianNan. Study on Spatial Beam Based on Displacement Deformation Theory[D]. Hang Zhou: Zhejiang University, 2015.
[7] 何欢, 宋大鹏, 张晨凯, 等. 一种考虑截面任意变形模式梁的有限元模型[J]. 航空学报, 2018,39(12):187-199.
HE Huan, SONG DaPeng, ZHANG ChenKai, et al. Finite element model of beam considering arbitrary deformation mode of cross-section[J]. Acta Aeronautica ET Astronautica Sinica, 2018,39(12):187-199.
[8] Wan C, Jiang H, Xie L, et al. Natural Frequency Characteristics of the Beam with Different Cross Sections Considering the Shear Deformation Induced Rotary Inertia[J]. Applied Sciences, 2020, 10(15):5245.
[9] 吴晓. 三参数地基上矩形板热振动固有频率[J]. 振动与冲击, 1998,(2):88-91.
WU Xiao. The Thermal Vibration Natural Frequency of Rectangular Plates on Foundation of Three-Parametric Model[J]. Journal of Vibration and Shock, 1998,(2):88-91.
[10] Avsec J, Oblak M. Thermal vibrational analysis for simply supported beam and clamped beam[J]. Journal of Sound and Vibration, 2007, 308(3/5):514-525.
[11] Pradhan S C, Murmu T. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method[J]. Journal of Sound and Vibration, 2009, 321(1/2):342-362.
[12] Mahi A, Bedia E A A, Tounsi A, et al. An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions[J]. Composite Structures, 2010, 92(8):1877-1887.
[13] Snyder H T, Kehoe M W. Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles[R]. NASA Technical Memorandum 4274, Washington D.C.:NASA, 1991.
[14] 贺旭东, 吴松, 张步云,等. 热应力对机翼结构固有频率的影响分析[J]. 振动,测试与诊断, 2015, (6):1134-1139.
HE XuDong, WU Song, ZHANG BuYun,et al. Influence of Thermal Stress on Vibration Frequencies of a Wing Structure[J]. Journal of Vibration, Measurement & Diagnosis, 2015, (6):1134-1139.
[15] 黄帆, 陈昌亚. 热载荷蜂窝夹层板作用下固有频率预测与分析[J]. 深空探测学报, 2015,(4):371-375.
HUANG Fan, CHEN ChangYa. Natural Frequency Prediction and Analysis of Honeycomb Sandwich Plate with Thermal Load[J]. Journal of Deep Space Exploration, 2015,(4):371-375.
[16] Kehoe M W, Deaton V C. Correlation of analytical and experimental hot structure vibration results[R]. NASA Technical Memorandum 104269, Washington D.C.:NASA, 1993.
[17] 刘芹, 任建亭, 姜节胜, 等. 复合材料层合板非线性热振动分析[J]. 动力学与控制学报, 2005, 3(1):78-83.
LIU Qin, REN JiamTing, JIANG JieSheng,et al. Nonlinear Thermal Vibration Characteristic Analysis Composite Laminated Plates[J]. Journal of Dynamics and Control, 2005, 3(1):78-83.
[18] 史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析[J]. 计算机辅助工程, 2006, 15(z1):15-18.
SHI XiaoMing, YANG BingYuan. Temperature Field and Mode Analysis of Flat Plate with Thermal Environment of Transient Heating[J]. Computer Aided Engineering, 2006, 15(z1):15-18.
[19] 余艳辉, 李书, 王远达. 热环境下的金属热防护系统的动力学特性研究[J]. 振动.测试与诊断, 2013, 33(z1):171-175.
YU YanHui, LI Shu, WANG YuanDa. Study on Dynamic Characteristics of Metallic Thermal Protection System with Thermal Environment[J]. Journal of Vibration,Measurement & Diagnosis, 2013, 33(z1):171-175.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}