高速铁路车轮扁疤智能识别算法的曲线适应性

刘旭麒,和振兴,杨丽蓉

振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 223-232.

PDF(2282 KB)
PDF(2282 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 223-232.
论文

高速铁路车轮扁疤智能识别算法的曲线适应性

  • 刘旭麒,和振兴,杨丽蓉
作者信息 +

Curve adaptability of intelligent recognition algorithm for high-speed railway wheel flat

  • LIU Xuqi, HE Zhenxing, YANG Lirong
Author information +
文章历史 +

摘要

高速铁路曲线地段轮轨之间的动力相互作用复杂,智能识别算法在曲线地段的适应性是实现对车轮扁疤全线不间断识别跟踪的前提。考虑高速铁路车轮扁疤信号的随机性特征,提出了一种基于变分模态分解(VMD)的高速铁路车轮扁疤识别方法。考虑曲线线路不同地段以及不同轨侧的影响,对动力学计算得到的轮轨力随机响应进行变分模态分解并将信号重构,通过包络谱特征识别车轮扁疤冲击频率和对应扁疤的长度。研究表明,在曲线地段正常车轮与扁疤车轮对应的包络谱之间存在显著差异,包络谱中10 mm以上扁疤冲击倍频特征明显;倍频峰值频率特征与列车速度对应扁疤冲击频率一致;前4阶包络谱均值与扁疤长度之间呈线性关系,可以通过包络谱均值直接识别扁疤的长度。对曲线外轨侧识别的车轮扁疤长度进行修正后,可以实现车轮扁疤全线不间断识别跟踪。

Abstract

High-speed railway wheel-rail dynamic interaction is complex in curve section, the adaptability of intelligent recognition algorithm in curve section is the premise of realizing continuous recognition and tracking wheel flat along the whole line. Considering the random characteristics of wheel flat signal of high-speed railway, a method of wheel flat recognition based on variational mode decomposition (VMD) was proposed. Considering the influence of different curve sections and rail sides, the random response of wheel-rail force obtained by dynamic calculation was decomposed by variational mode decomposition and the signal was reconstructed. The impact frequency and corresponding length of wheel flat are identified by envelope spectrum characteristics. The results show that the envelope spectrum of normal wheel is obviously different from the wheel with flat. In envelope spectrum, the frequency double peak above 10 mm wheel flat is obvious; The peak frequency characteristics of frequency doubling are consistent with the impact frequency of flat corresponding to train speed; The mean value of the amplitude corresponding to the first four orders of frequency multiplication is linear with the length of flat, which can be used to directly distinguish the length of flat. After correcting the length of flat recognized by the curve outer rail side, the continuous recognition and tracking of the wheel flat can be realized.

关键词

车轮扁疤 / 曲线线路 / 故障识别 / 变分模态分解

Key words

Wheel flat / Curve line / Fault identification / Variational modal decomposition

引用本文

导出引用
刘旭麒,和振兴,杨丽蓉. 高速铁路车轮扁疤智能识别算法的曲线适应性[J]. 振动与冲击, 2023, 42(5): 223-232
LIU Xuqi, HE Zhenxing, YANG Lirong. Curve adaptability of intelligent recognition algorithm for high-speed railway wheel flat[J]. Journal of Vibration and Shock, 2023, 42(5): 223-232

参考文献

[1] Marijonas Bogdevicius, Rasa Z, Bureika, et al. An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel flat[J]. Vehicle System Dynamics, 2016, 54(5): 689−705.
[2] 凌亮, 曹亚博, 肖新标, 等. 车轮擦伤对高速轮轨接触  行为的影响[J]. 铁道学报, 2015, 37(7): 32-39.
LING Liang, CAO Yabo, XIAO Xinbiao, et al. Effect of wheel flats on the high-speed wheel-rail contact behavior[J]. Journal of the China Railway Society, 2015, 37(7): 32−39.
[3] 敬霖,刘凯.车轮踏面缺陷引起的轮轨动态响应综述[J].交通运输工程学报, 2021, 21(01):285-315.
JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(01):285-315.
[4] Liang B, lwnicki S D, Zhao Y, et al. Railway wheel-flat and rail surface defect modeling and analysis by time-frequency techniques[J]. International Journal of Vehicle Mechanics and Mobility, 2013, 51( 9) : 1403 - 1421.
[5] Shiqian Chen, Kaiyun Wang, Chao Chang, et al. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions[J]. Journal of Sound and Vibration,2021, 498: 115963.
[6] Nicola Bosso, Antonio Gugliotta, Nicolò Zampieri, Wheel flat detection algorithm for onboard diagnostic[J]. Measurement, 2018, 123 193-202.
[7] Yifan Li, Ming J. Zuo, Jianhui Lin, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter[J]. Mechanical Systems and Signal Processing, 2017, 84: 642-658.
[8] 李奕璠, 林建辉, 刘建新, 等. 车轮踏面擦伤识别方法[J]. 振动与冲击, 2013, 32(22): 21-27.
LI Yifan, LIN Jianhui, LIU Jianxin, et al. Identification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32(22): 21-27.
[9] 田丽丽, 方宗德, 赵勇. 铁路货车车轮踏面伤损检测中剥离与擦伤定位方法[J]. 铁道学报, 2009, 31(05): 31-36.
TIAN Lili, FANG Zongde, ZHAO Yong. Locating Methods of Peeling and Flat Spots in Detection of Wheel Tread Damages of Railway Wagons[J]. Journal of the China Railway Society, 2009, 31(05): 31-36.
[10] 史红梅, 赵蓉, 余祖俊, 等. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]振动与冲击, 2016, 35(10): 24-28+54.
SHI Hongmei, ZHAO Rong, YU Zujun, et al. Detection method for wheel flats based on rail vibration responses analysis[J]. Journal of Vibration and Shock, 2009, 31(05): 31-36.
[11] 宋颖,施文杰,孙宝臣.基于自适应连续小波模极大值算法的车轮擦伤定量评估[J]. 振动与冲击, 2021, 40(12): 168-178+209.
SONG Ying, SHI Wenjie, SUN Baochen. Evaluation of railway wheel-flat via adaptive continuous wavelet transform modulus maximum algorithm[J]. Journal of Vibration and Shock, 2021, 40(12): 168-178+209.
[12] 铁运[2008]28 号, 高速动车组整车试验规范[S]. Railway[2008] No. 28, Test specification for high speed emus [S].
[13] 翟婉明. 车辆—轨道耦合动力学 [M]. 北京: 科学出版社,2007:12-19.
ZHAI Wanming. Vehicle-railway coupling dynamics[M]. 3rd ed. Beijing: China Science Press, 2007.
[14] 李余兴, 李亚安, 陈晓,等 . 基于VMD和中心频率的舰船辐射噪声特征提取方法研究[J]. 振动与冲击, 2018, 37(23): 213-218+285.
LI Yuxing, LI Yaan, CHEN Xiao, et al. Feature extraction of ship-radiated noise based on VMD and center frequency[J]. Journal of Vibration and Shock, 2018, 37(23): 213-218+28.

PDF(2282 KB)

Accesses

Citation

Detail

段落导航
相关文章

/