在风洞试验和数据分析的基础上,对面对面和角对角两种布局的双子塔建筑的气动特性和抗风性能进行了对比研究。研究的目的是为超高层双子塔的设计选型优化提供技术参考。结果表明,双塔建筑对风效应的性能取决于多个因素,包括双塔间距、结构动力特性、设计风速等。在较低的约化风速下,这两种布局的双子塔风效应没有明显差别。然而,当约化风速达到7以上后,双子塔将对塔楼的间距变得相当敏感,从而这两个不同的布局的抗风性能差别就会很明显。当双塔的相对间距在0.5左右或更窄时,角对角布局会导致严重的尾流激振,因此面对面布局的抗风性能相对较好。然而,随着间距的增加,角对角布局中的尾流激振会相应减弱。同时,角对角布局开始展示在借助气动干扰抑制涡激振动方面比面对面布局更为持续的优点,这导致角对角布局下的横风向动力响应比面对面布局显著减小。在相对间距为2时,角对角布局的风致倾覆力矩仅为面对面布局时的60%左右。
Abstract
A comparison study is conducted on aerodynamic characteristics and wind resistance of twin-tower buildings with two configurations, i.e., side-by-side and corner-to-corner, based on wind tunnel testing and aftermath analysis. The purpose of the study is to provide technical references to the optimization design of supertall twin buildings. The results indicate that the performance of the twin-tower buildings to wind effects depends on many factors, including the spacing between the two buildings, the structural dynamic properties, design wind speed, etc. In a lower reduced wind speed, the wind responses of the twin-tower buildings with these two configurations are similar to each other. However, when the reduced wind speed exceeds 7, the twin-tower buildings become quite sensitive to the spacing between the two buildings, and corresponding performance of these two configurations appears very different from each other. At relative spacing of 0.5 or narrower, the corner-to-corner configuration can cause severe wake buffeting, so the side-by-side configuration shows better performance for wind effects. However, as the spacing increases, the wake buffeting in the corner-to-corner configuration becomes less significant. Meanwhile, the corner-to-corner configuration starts to show a more sustainable benefit than the side-by-side configuration in suppressing vortex shedding by aerodynamic interference, which results in a much lower response in the across-wind dynamic response. At a relative spacing of 2, the wind-induced overturning moment of the corner-to-corner configuration is only about 60% of that of the side-by-side configuration.
关键词
高层建筑 /
双塔建筑 /
建筑布局 /
气动特性 /
风致响应 /
风洞试验
{{custom_keyword}} /
Key words
high-rise building /
twin towers /
building layout /
aerodynamic characteristics /
wind induced response /
wind tunnel test
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. Qin W, Shi J, Yang X, et al. Characteristics of Wind Loads on Twin-Tower Structure in Comparison with Single Tower[J]. Engineering Structures, 2022, 251: 112780.
[2]. Sakamoto H, Hainu H, Obata Y. Fluctuating forces acting on two square prisms in a tandem arrangement[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1987, 26(1): 85-103.
[3]. Lam K M, Leung M Y H, Zhao J G. Interference effects on wind loading of a row of closely spaced tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(5): 562-583.
[4]. Zu G B, Lam K M. Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement[J]. Wind & structures, 2018, 26(6): 397-413.
[5]. 谢壮宁, 顾明. 任意排列双柱体的风致干扰效应[J]. 土木工程学报,2005,38(10):32-38.
Xie Zhuangning, Gu Ming. Wind-induced interference effects between two arbitrarily arranged prisms [J]. China Civil Engineering Journal, 2005,38(10):32-38.
[6]. Xie Z N, Gu M. Mean interference effects among tall buildings[J]. Engineering Structures, 2004, 26(9): 1173-1183.
[7]. Xie Z N, Gu M. Simplified formulas for evaluation of wind-induced interference effects among three tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(1): 31-52.
[8]. 谢壮宁, 朱剑波. 并列布置超高层建筑间的风压干扰效应[J]. 土木工程学报, 2012, 45(10): 23–30.
XIE Zhuangning, ZHU Jianbo. Interference effects of wind pressures on tall buildings in side-by-side arrangement[J]. China Civil Engineering Journal, 2012, 045(010):23-30.
[9]. 杜晓庆, 许汉林, 马文勇, 等. 串列双方柱气动干扰效应试验研究[J]. 建筑结构学报, 2019, 40(11): 27–34.
DU Xiaoqing, XU Hanlin, MA Wenyong, et al. Experimental study on aerodynamic interference effect of two square cylinders in a tandem arrangement [J]. Journal of Building Structures, 2019, 40(11):31-38.
[10]. 石俊阳,谢霁明. 双子塔气动力及其相关性对间距的敏感度研究[J]. 振动与冲击, 2020, v.39;No.379(23):15-23+53.
SHI Junyang, XIE Jiming. Sensitivity of twin-tower's aerodynamic forces and their correlation to spacing [J]. Journal of Vibration and Shock, 2020, v.39;No.379(23):15-23+53.
[11]. Xie J, Irwin P A. Wind-induced response of a twin-tower structure [J]. Wind and Structures, Techno-Press, 2001, 4(6): 495–504.
[12]. Song J, Tse K T. Dynamic characteristics of wind-excited linked twin buildings based on a 3-dimensional analytical model[J]. Engineering Structures, 2014, 79: 169–181.
[13]. Song J, Tse K T, Tamura Y, et al. Aerodynamics of closely spaced buildings: with application to linked buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 149: 1-16.
[14]. 杜晓庆, 陈丽萍, 董浩天, 等. 串列双方柱的风压特性及其流场机理[J]. 湖南大学学报 (自然科学版), 2021,48(03):109-118.
DU Xiaoqing, Chen Liping, Dong Haotian, et al. Wind pressure characteristics and flow mechanism of two tandem square columns. [J]. Journal of Hunan University(Natural Sciences) , 2021,48(03):109-118.
[15]. Kim B, Tse K T, Yoshida A, et al. Statistical analysis of wind-induced pressure fields and PIV measurements on two buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 161-174.
[16]. Du X, Chen R, Dong H, et al. Aerodynamic characteristics of two closely spaced square cylinders in different arrangements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104462.
[17]. 陈强, 陈水福, 史卓然. 等距布局双塔高层建筑风荷载特性研究[J]. 建筑结构,2019,49(14):126-130.
Chen Qiang,Chen Shuifu,Shi Zhuoran. Study on wind-load characteristics of twin-tower high-rise buildings in equal distance layout [J]. Building Structure,2019,49(14):126-130.
[18]. Ni Z H, He C K, Xie Z N, et al. Experimental test on bridge jointed twin-towered buildings to stochastic wind loads[J]. Wind & structures, 2001, 4(1): 63-72.
[19]. 李元齐,沈祖炎. 本征正交分解法在曲面模型风场重构中的应用[J]. 同济大学学报(自然科学版),2006(1).
LI Yuanqi, SHEN Zuyan. Application of the Proper Orthogonal Decomposition Method to Wind Field Reconstruction of Models with Curved Surfaces[J]. JOURNAL OF TONGJI UNIVERSITY(NATURAL SCIENCE), 2006(1).
[20]. 江棹荣,倪振华,谢壮宁. POD在大跨屋盖风致响应计算中的应用[J]. 土木工程学报,2007,40(6):1-6.
Jiang Zhaorong, Ni Zhenhua, Xie Zhuangning Application of POD to calculation of wind-induced response of large roofs[J]. CHINA CIVIL ENGINEERING JOURNAL,2007,40(6):1-6.
[21]. 李方慧,倪振华,沈世钊,等. POD原理解析及在结构风工程中的几点应用[J]. 振动与冲击,2009(4).
Li Fanghui, Ni Zhenhua, Shen Shizhao, et al. Theory of POD and its application in wind engineering of structures[J]. JOURNAL OF VIBRATION AND SHOCK,2009(4).
[22]. 章李刚,楼文娟,黄铭枫. 基于POD法控制模态选择的大跨屋盖结构风致动力响应分析[J]. 浙江大学学报(工学版),2012(9).
ZHANG Li-gang, LOU Wen-juan, HUANG Ming-feng. Wind-induced dynamic response analysis of long-span roof structure based on selection of dominant vibration-modes with POD method[J]. Journal of Zhejiang University(Engineering Science) ,2012(9).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}