高切向流速高声强条件下梯度阻抗吸声超材料研究

巨泽港1,吴飞2,赵疆1,胡嫚1,高鸣源1,郝耀东3,陈达亮3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 305-312.

PDF(3137 KB)
PDF(3137 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 305-312.
论文

高切向流速高声强条件下梯度阻抗吸声超材料研究

  • 巨泽港1,吴飞2,赵疆1,胡嫚1,高鸣源1,郝耀东3,陈达亮3
作者信息 +

Gradient impedance sound absorbing metamaterial under high tangential flow velocity and high sound intensity

  • JU Zegang1, WU Fei2, ZHAO Jiang1, HU Man1, GAO Mingyuan1, HAO Yaodong3, CHEN Daliang3
Author information +
文章历史 +

摘要

在涡扇航空发动机声衬表面,存在高速切向流场与高声强声场耦合问题,吸声机理与调控机制复杂。高切向流速高声强条件下低频宽带噪声的有效吸收极具挑战性。该研究提出考虑高切向流速、高声强以及复杂容抗修正的声阻抗理论方法,设计了梯度阻抗调控吸声超材料。从理论解析计算、有限元数值建模及试验测试三个维度深入分析声波与结构的作用机理和调控规律。结果表明:梯度阻抗吸声超材料可有效提高吸声效率,避免传统声衬吸声频带窄的缺点。在0m/s、30m/s、60m/s、98m/s切向流速和130dB背景噪声下,提出的梯度阻抗吸声超材料在500Hz-3000Hz范围内具备良好吸声效果。该超材料结构简单,在高切向流速高声强复杂边界条件下,仍有深亚波与宽带吸声特性,具有广阔的应用前景。

Abstract

There is a coupling problem between high-speed grazing flow field and high sound intensity sound field on the acoustic liner surface of turbofan aero engine, and the sound absorption mechanism and regulation mechanism are complex. The effective absorption of low-frequency broadband noise under the condition of high grazing velocity and high sound intensity is very challenging. In this paper, a theoretical method of acoustic impedance considering high grazing velocity, high sound intensity and complex capacitive reactance correction is proposed, and a gradient acoustic impedance controlled sound absorbing metamaterial is designed. The interaction mechanism between sound wave and structure and the regulation law of sound wave are deeply analyzed from three dimensions: theoretical analytical calculation, finite element numerical modeling and experimental verification. The results show that the gradient impedance sound absorbing metamaterial can effectively improve the sound absorption efficiency and avoid the disadvantage of the narrow sound absorption band of the traditional acoustic liner. Under the grazing velocity of 0m/s, 30m/s, 60m/s, 98m/s and 130dB background noise, the gradient impedance sound-absorbing metamaterial proposed in this paper has a good sound-absorbing effect in the range of 500Hz-3000Hz. The metamaterial has a simple structure and still has deep sub-wave and broadband sound absorption characteristics under the complex boundary conditions of high grazing velocity and high sound intensity.

关键词

声衬 / 梯度阻抗调控 / 梯度卷曲声腔 / 低频宽带吸声

Key words

acoustic liner / gradient impedance regulation / gradient curl cavity / low frequency broadband sound absorption

引用本文

导出引用
巨泽港1,吴飞2,赵疆1,胡嫚1,高鸣源1,郝耀东3,陈达亮3. 高切向流速高声强条件下梯度阻抗吸声超材料研究[J]. 振动与冲击, 2023, 42(5): 305-312
JU Zegang1, WU Fei2, ZHAO Jiang1, HU Man1, GAO Mingyuan1, HAO Yaodong3, CHEN Daliang3. Gradient impedance sound absorbing metamaterial under high tangential flow velocity and high sound intensity[J]. Journal of Vibration and Shock, 2023, 42(5): 305-312

参考文献

[1] 乔渭阳. 航空发动机气动声学[M]. 北京航空航天大学出版社, 2010.
QIAO Weiyang. Aeroengine Aeroacoustics[M]. Beijing University of Aeronautics and Astronautics Press, 2010.
[2] KURZE, ULRICH J. Influence of Flow and High Sound Level on the Attenuation in a Lined Duct[J]. Journal of the Acoustical Society of America, 1970, 49(5B):1643-1654.
[3] MORRELL S, TAYLOR R, LYLE D. A review of health effects of aircraft noise*[J]. Australian and New Zealand Journal of Public Health, 2010, 21(2):221-236.
[4] MA X, Su Z. Development of acoustic liner in aero engine: a review[J]. Science China Technological Sciences, 2020, 63(8):2491–2504.
[5] ZHANG X, CHENG L. Acoustic impedance of micro-perforated panels in a grazing flow[J]. Journal of the Acoustical Society of America, 2019, 145(4):2461-2469.
[6] CAHNG D, LU F, JIN W, et al. Low-frequency sound absorptive properties of double-layer perforated plate under grazing flow[J]. Applied Acoustics, 2018, 130(jan.):115–123.
[7] SIMON F. Long Elastic Open Neck Acoustic Resonator for low frequency absorption[J]. Journal of Sound and Vibration, 2018, 421:1-16.
[8] TROIAN R, DRAGNA D, BAILLY C, et al. Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow[J]. Journal of Sound and Vibration, 2016, 392:200-216.
[9] 杨嘉丰, 薛东文, 李卓瀚,等. 切向流条件下短舱单/双自由度声衬实验研究[J]. 航空学报, 2020, 41(11):223860.
YANG Jiafeng, XUE Dongwen, LI Zhuohan, et al. Experimental study on single/double degree of freedom acoustic lining of nacelle under tangential flow[J]. Journal of Aeronautics, 2020, 41(11):223860.
[10] GAO N, ZHANG Z, DENG J, et al. Acoustic Metamaterials for Noise Reduction: A Review[J]. Advanced Materials Technologies, 2022: 2100698.
[11] 吴九汇, 马富银, 张思文,等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13):68-78.
WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of acoustic metamaterials in low frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13):68-78.
[12] 冯涛, 王余华, 王晶,等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20):8.
FENG Tao, WANG Yuhua, WANG Jing, et al. Research and application progress of structural acoustic metamaterials[J]. Journal of Vibration and Shock, 2021, 40(20):8.
[13] LIANG Z, LI J. Extreme Acoustic Metamaterial by Coiling Up Space[J]. Physical Review Letters, 2012, 108(11):114301.
[14] JONES M G, WATSON W R, NARK D M, et al. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner[C]// 20th AIAA/CEAS Aeroacoustics Conference. 2014:3352.
[15] BECK B S. Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner[C]// International Society for Optics and Photonics. International Society for Optics and Photonics, 2014:906421.
[16] TANG Y, REN S, MENG H, et al. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound[J]. Scientific Reports, 2017, 7:43340.
[17] WU F, XIAO Y, YU D, et al. Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J]. Applied Physics Letters, 2019, 114(15):151901.
[18] HUANG S, ZHOU E, HUANG Z, et al. Broadband sound attenuation by metaliner under grazing flow[J]. Applied Physics Letters, 2021, 118(6):063504.
[19] WALKER B E, Charwat A F. Correlation of the effects of grazing flow on the impedance of Helmholtz resonators[J]. Journal of the Acoustical Society of America, 1982, 72(2):550-555.
[20] LEE S, IH J. Empirical model of the acoustic impedance of a circular orifice in grazing mean flow[J].The Journal of the Acoustical Society of America, 2003, 114(1):98-113.
[21] STINSON, MICHAEL R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape[J]. Journal of the Acoustical Society of America, 1991, 89(2):550-558.
[22] 季振林. 消声器声学理论与设计[M]. 科学出版社, 2015.
JI Zhenlin. Acoustic theory and design of muffler[M]. Science Press, 2015.
[23] 吴飞, 陈文渊, 巨泽港,等. 微缝卷曲耦合低频吸声超材料研究[J]. 振动与冲击, 2021, 40(17):5.
WU Fei, CHEN Wenyuan, JU Zegang, et al. Study on low frequency sound absorbing metamaterials with micro slit curl coupling[J]. Journal of Vibration and Shock, 2021, 40(17):5.
[24] COMSOL. COMSOL Multiphysics 5.6, User's Guide. 2021.

PDF(3137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/