框架-分布摇摆芯筒-核心筒结构体系力学模型及耗能减震性能分析

陈易飞, 何浩祥, 兰炳稷, 孙澔鼎

振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 47-56.

PDF(3199 KB)
PDF(3199 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 47-56.
论文

框架-分布摇摆芯筒-核心筒结构体系力学模型及耗能减震性能分析

  • 陈易飞,何浩祥,兰炳稷,孙澔鼎
作者信息 +

Mechanical model and energy dissipation performance analysis of frame-distributed rocking core tube-core tube structure system

  • CHEN Yifei, HE Haoxiang, LAN Bingji, SUN Haoding
Author information +
文章历史 +

摘要

为了提高传统框架-核心筒(FCT)结构的经济性,提出框架-分布芯筒-核心筒(FDCT)新型高层结构体系,用以减小传统筒体围合面积。进而提出框架-分布摇摆芯筒-核心筒(FDRCT)新型高层结构体系,改善FDCT因刚度削弱导致的抗震能力下降。根据FCT结构、FDCT结构和FDRCT结构的简化分析模型,基于Lagrange方程建立三种结构的动力方程。通过分析地震下结构的时程响应,针对分布摇摆芯筒的质量进行相关参数分析,证明附加摇摆体系的FDRCT结构具备优良的耗能减震性能。对三种结构分别进行了不同场地条件以及不同类型长周期地震波下动力时程分析,结果表明FDRCT结构在不同类型地震波下均有耗能减震效果,且在长周期地震波下更为优越。对三种结构的性能-利润总值进行评估,结果表明在不同类型地震波下FDRCT结构均可实现既能提升结构的经济性,也能保证结构在地震下的安全性能。

Abstract

In order to improve the economy of traditional frame core tube (FCT) structural system, a new high-rise structural system of frame-distributed tube-core tube (FDCT) is proposed to reduce the enclosed area of traditional tube. Furthermore, the frame-distributed rocking tube-core tube (FDRCT) high-rise structural system is proposed to improve the reduced seismic capacity of FDCT due to the weakened stiffness. According to the simplified mechanical models of FCT, FDCT and FDRCT, the three structural dynamic equations are established based on Lagrange Equation. By analyzing the time history response of the structure subjected to earthquake and the effect of mass parameter of distributed rocking tube, it is proved that the FDRCT structure with rocking system has excellent energy dissipation and damping performance. The dynamic time history analysis of the three structures under different site conditions and different types of long-period earthquake waves is carried out, and the results show that the FDRCT structure could has energy dissipation and damping effect under different types of earthquake waves, and it is superior under long-period seismic waves. By evaluating the performance-profit value of the three structures, it show that the FDRCT structure can improve the structural economy and ensure the safety performance under different types of earthquake waves.

关键词

框架-核心筒结构 / 分布摇摆芯筒 / 层间位移角 / 耗能减震 / 性能-利润总值

Key words

frame-core tube structure / distributed rocking tube / Inter-story drift ratio / energy dissipation and damping / performance-profit value

引用本文

导出引用
陈易飞, 何浩祥, 兰炳稷, 孙澔鼎. 框架-分布摇摆芯筒-核心筒结构体系力学模型及耗能减震性能分析[J]. 振动与冲击, 2023, 42(5): 47-56
CHEN Yifei, HE Haoxiang, LAN Bingji, SUN Haoding. Mechanical model and energy dissipation performance analysis of frame-distributed rocking core tube-core tube structure system[J]. Journal of Vibration and Shock, 2023, 42(5): 47-56

参考文献

[1] 徐培福, 傅学怡. 复杂高层建筑结构设计[M]. 北京:清华大学出版社, 2005.
XU Peifu, FU Xueyi. Structural design of complex high-rise buildings[M]. Beijing: Tsinghua University Press, 2013. (in Chinese)
[2] Brownjohn J M W. Ambient vibration studies for system identification of tall buildings[J]. Earthquake Engineering and Structure Dynamics, 2003, 32(1): 71-95.
[3] XIAO S J, XU L H, LI Z X. Seismic performance and damage analysis of RC frame-core tube building with self-centering braces[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 146-157.
[4] GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
GB 50011-2010, Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[5] 缪志伟, 吴耀辉, 马千里, 等. 框架-核心筒高层混合结构的三维空间弹塑性抗震分析[J]. 建筑结构学报, 2009, 30(04): 119-129.
MIAO Zhiwei, WU Yaohui, MA Qianli, et al. Seismic performance evaluation using nonlinear time history analysis with three-dimensional structural model for a hybrid frame-core tube structure[J]. Journal of Building Structures, 2009, 30(04): 119-129. (in Chinese)
[6] 王俊然. 新型带耗能支撑-分散核心筒结构的抗震性能研究[D]. 广州:广州大学, 2018.
WANG Junran. Study on seismic performance of a new disperse core tubes structure with energy dissipating braces[D]. Guangzhou: Guangzhou University, 2018. (in Chinese)
[7] Jiang J T, Lu P P, Yang S, et al. The form and features of dispersive-tube structure[C]. 2nd International Conferene on Structures and Building Materials Advanced Materials Research, 2012, 446-449: 3346-3350.
[8] Xiao Y F, Zeng L, Chen Y G, et al. Seismic fragility analysis of concrete encased frame‐reinforced concrete core tube hybrid structure based on quasi-static cyclic test[J]. The Structural Design of Tall and Special Buildings, 2019, 28: e1665.
[9] Lin C P, Wiebe R, Berman J W. Analytical and numerical study of curved-base rocking walls[J]. Engineering Structures, 2019, 197: 109397.
[10] QU Z, WADA A, MOTOYUI S. Pin-supported walls for enhancing the seismic performance of building structures[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2075-2091.
[11] 冯玉龙, 吴京, 孟少平, 等. 底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J]. 振动与冲击, 2016, 35(23): 35-40.
FENG Yulong, WU Jing, MENG Shaoping, et al. Aseismic performance analysis of rocking wall frame structures with buckling-restrained braces in base[J]. Journal of Vibration and Shock, 2016, 35(23): 35-40. (in Chinese)
[12] Makris N, Aghagholizadeh M. The dynamics of an elastic structure coupled with a rocking wall[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(6): 945-962.
[13] Meek J W. Dynamic response of tipping core buildings[J]. Earthquake Engineering & Structural Dynamics, 1978, 6(5): 437-454.
[14] Nielsen G M, Almufti I, Mahin S A, et al. Performance of rocking core walls in tall buildings under severe seismic motions[C]// Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering. Paper No. 483. Ottawa, Canada: Canadian Association for Earthquake Engineering, 2010.
[15] 韩流涛, 葛楠, 苏幼坡, 等. 摩擦摆隔震-悬挂复合结构体系的减震效果分析[J]. 建筑结构学报, 2018, 39(S1): 60-70.
HAN Liutao, GE Nan, SU Youpo, et al. Analysis on seismic mitigation efficiency for FPS-suspension composite structure system[J]. Journal of Building Structures, 2018, 39(S1): 60-70. (in Chinese)
[16] 谢昭波, 解琳琳, 林元庆, 等. 典型框架-核心筒单重与双重抗侧力体系的抗震性能与剪力分担研究[J]. 工程力学, 2019, 36(10): 40-49.
CHEA Cheav Por, XIE Linlin, LU Xinzheng, et al. Study on seismic performance and collapse-resistant capacity of typical frame-core tube structures with single and dual lateral-force resisting system[J]. Engineering Mechanics, 2019, 36(10): 40-49. (in Chinese)
[17] 颜桂云, 黄冠骅, 滕军, 等. 装配式耗能减震节点连接中削弱型约束钢板阻尼器滞回性能试验[J]. 振动与冲击, 2021, 40(15): 98-106+122.
ZHENG Lianqiong, HUANG Guanhua, TENG Jun, et al. Tests for hysteretic performance of weakened constrained steel-plate damper in prefabricated energy dissipation joints [J]. Journal of Vibration and Shock, 2021, 40(15): 98-106+122. (in Chinese)
[18] GREGORY A M, YOSHIHIRO K, CHARLES R. Effect of column stiffness on braced frame seismic behavior[J]. Journal of Structural Engineering, 2004, 130(3): 381.
[19] Zhou Y, Ping T Y, Gong S M, et al. An improved defining parameter for long-period ground motions with application of a super-tall building[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 462-472.
[20] 王博, 代慧娟, 吴涛, 等. 近场与远场长周期地震动对高层结构作用机理比较分析[J]. 振动与冲击, 2018, 37(12): 123-130.
WANG Bo, DAI Huijuan, Wu Tao, et al. Comparative analysis of action mechanisms for high-rise structures under near-fault and far-field long-period ground motions[J]. Journal of Vibration and Shock, 2018, 37(12): 123-130. (in Chinese)
[21] 戴靠山, 胡皓, 梅竹, 等. 长周期地震下风力发电塔架结构地震反应分析[J]. 工程力学, 2021, 38(08): 213-221.
DAI Kao-shan, HU Hao, MEI Zhu, et al. Seismic response analysis of wind power tower under long period ground motions[J]. Engineering Mechanics, 2021, 38(08): 213-221. (in Chinese)
[22] 丁佳伟, 何浩祥, 闫晓宇. 地震动功率谱改进模型及其在人工地震动合成中的应用[J]. 振动与冲击, 2020, 39(21): 258-266.
DING Jiawei, HE Haoxiang, YAN Xiaoyu. Improved model of seismic power spectrum and its application in artificial ground motion synthesis [J]. Journal of Vibration and Shock, 2020, 39(21): 258-266. (in Chinese)

PDF(3199 KB)

212

Accesses

0

Citation

Detail

段落导航
相关文章

/