DC-DC Boost变换器系统的复合模态振荡分析

张云1,王聪1,王小荣2,张绍华1,张宏立1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 57-65.

PDF(3433 KB)
PDF(3433 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (5) : 57-65.
论文

DC-DC Boost变换器系统的复合模态振荡分析

  • 张云1,王聪1,王小荣2,张绍华1,张宏立1,2
作者信息 +

Composite mode oscillation analysis of DC-DC boost converter system

  • ZHANG Yun1, WANG Cong1, WANG Xiaorong2, ZHANG Shaohua1, ZHANG Hongli1,2
Author information +
文章历史 +

摘要

以DC-DC Boost变换器系统为研究对象,引入参数激励和外部激励,建立参外联合激励多尺度耦合动力学模型。当系统表现为严格共振关系时,且参数、外部激励频率与系统固有频率存在量级差时,把两激励项转化为单一周期激励项的函数形式,将此作为慢变参数,得到广义自治快子系统。主要探究了三种典型激励频率比下系统的复合模态振荡行为,借助单参数和双参数分岔图、复杂度谱熵图、转换相图等,分析了“非对称式光滑Fold-非光滑Fold型”、“周期性对称式非光滑Fold-Fold型”等复合模态振荡的产生机理和非光滑动力学行为特性。特别地,系统在不同频率比下的运行轨线结构,穿越非光滑分界面次数,簇发分岔点等均有所变化,从而导致含不同涡卷数的复合模态振荡。本研究为相关耦合电路的簇发振荡研究提供了理论基础及辅助分析模型。

Abstract

Taking DC-DC Boost converter system as the research object, a multi-scale coupled dynamic model under both parametric and external excitations is established. When the system exhibits a strict resonance relationship and there is a magnitude difference between the parameter, external excitation frequency and the natural frequency of the system, the two excitation terms are transformed into a function of a single periodic excitation term, which is used as a slow-changing parameter to obtain a generalized autonomous fast subsystem. The complex mode oscillation behavior of the system under three typical excitation frequency ratios is studied. With the help of single-parameter and two-parameter bifurcation diagrams, complex spectral entropy diagrams, and phase transition diagrams, the generation mechanism and non-smooth dynamic behavior characteristics of asymmetric smooth Fold-nonsmooth Fold type and periodically symmetric nonsmooth Fold-Fold type modes oscillation are analyzed. In particular, the trajectory structure, the number of non-smooth interfaces crossed, the number of cluster bifurcations, etc. of the system at different frequency ratios all change, resulting in complex mode oscillations with different number of vortices. This study provides a theoretical basis and an auxiliary analysis model for the study of cluster oscillation of correlated coupling circuits.

关键词

DC-DC Boost 变换器 / 参外联合激励 / 分岔机理 / 复合模态振荡

Key words

DC-DC Boost convertor / Participation in combination / Bifurcation mechanism / Composite modal oscillation

引用本文

导出引用
张云1,王聪1,王小荣2,张绍华1,张宏立1,2. DC-DC Boost变换器系统的复合模态振荡分析[J]. 振动与冲击, 2023, 42(5): 57-65
ZHANG Yun1, WANG Cong1, WANG Xiaorong2, ZHANG Shaohua1, ZHANG Hongli1,2. Composite mode oscillation analysis of DC-DC boost converter system[J]. Journal of Vibration and Shock, 2023, 42(5): 57-65

参考文献

[1] 朱诗慧, 周震, 吕敬, 等. 三相驱动下非光滑振动驱动系统的动力学分析[J]. 力学学报, 2020, 52(6): 1755-1764.
Zhu Shihui, Zhou Zhen, Lü Jing, et al. Kinetics analysis of non-smooth vibration-driven system with three-phase control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1755-1764.
[2] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为[J]. 物理学报, 2021, 70(12): 162-172.
Cheng Kang, Sheng Yunian. Nonlinear frictional contact behavior of porous polymer hydrogels for soft robot[J]. Acta Physica Sinica, 2021, 70(12): 162-172.
[3] 黄良玉, 陆益民. 带恒功率负载DC-DC变换器的Lyapunov指数计算和动力学特性分析[J]. 电工技术学报, 2017, 32(24): 97-106.
Huang Liangyu, Lu Yiming. Lyapunov exponent calculation and dynamics properties of DC-DC converter with constant power load[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 97-106.
[4] 李双宝, 马茜茜, 张伟. 非光滑系统全局动力学Melnikov方法的研究进展[J]. 动力学与控制学报, 2020, 18(02): 9-20.
Li Shuangbao, Ma Qianqian, Zhang Wei. Research progress in Melnikov method for global dynamics of non-smooth systems[J]. Journal of Dynamics and Control, 2020, 18(02): 9-20.
[5] Qin Wenjie, Tan Xuewen, Shi Xiaotao, et al. Sliding dynamics and bifurcations in the extended nonsmooth Filippov ecosystem[J]. International Journal of Bifurcation and Chaos, 2021, 08(31): 2150119.
[6] 王世俊, 同长虹, 罗冠炜. 含多刚性约束的两自由度振动系统的动力学特性分析[J]. 振动与冲击, 2021, 40(06): 11-22+78.
Wang Shijun, Tong Changhong, Luo Guanwei. Dynamic characteristics of a two-degree-of-freedom vibration system with multiple rigid constraints[J]. Journal of Vibration and Shock, 2021, 40(06): 11-22+78.
[7] 李振华, 周国华, 刘啸天, 等. 电感电流伪连续导电模式下Buck变换器的动力学建模与分析[J]. 物理学报, 2015, 64(18): 209-218.
Li Zhenhua, Zhou Guohua, Liu Xiaotian, et al. Dynamical modeling and analysis of buck converter operating in pseudo-continuous conduction mode[J], Acta Physica Sinica, 2015, 64(18): 209-218.
[8] P. Kowalczyk, M.di. Bernardo Two-parameter degenerate sliding bifurcations in Filippov systems[J]. Physica D: Nonlinear Phenomena, 2005, 03(204): 204-229.
[9] G.Fuhrmann. Non-smooth saddle-node bifurcations III: Str ange attractors in continuous time[J]. Journal of Differential Equations, 2016, 03(261): 2109-2140.
[10] Xie Lingling, He Fangzheng, Situ Shuwei. Study of the mechanism of tangent bifurcation in voltage mode controlled DCM Buck converter[J]. Journal of Physics:Conference Series, 2019, 02(1187): 022001.
[11] Xiong Yanqin. Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with switching lines via multiple parameters[J]. Nonlinear Analysis:Real World Application, 2018, 41: 384-400.
[12] 张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展[J]. 力学学报, 2017, 49(3): 565-587.
Zhang Shu, Xu Jian. Review on nonlinear dynamics in systems with coupling delays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587.
[13] 李得洋, 丁旺才, 卫晓娟, 等. 两自由度含弹性约束碰撞振动系统共存吸引子转迁控制研究[J]. 振动工程学报, 2021, 34(01): 176-184.
Li Deyang, Ding Wangcai, Wei Xiaojuan, et al. Attractor migration control of a two-degree of freedom vibro-impact system with soft constraints[J]. Journal of Vibration engineering, 2021, 34(01): 176-184.
[14] A Hosham Hany. Nonlinear behavior of a novel switching Jerk system[J]. International Journal of Bifurcation and Chaos, 2020, 14(30): 2050202.
[15] Pedro T.Cardin, Jaime R.de Moraes, Paulo R.da Silva. Persistence of periodic orbits with sliding or sewing by singular perturbation[J]. 2015, 02(423): 1166-1182.
[16] Rinzel J. Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update[J]. Bulletin of Mathematical Biology, 1990, 01(52): 3-23.
[17] Zhao Xiaojun, Sun Yupeng, Li Xuemei, et al.  Multiscale transfer entropy: Measuring information transfer on multiple time scales[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 202-212.
[18] 唐建花, 李向红, 申永军. 周期激励下van der Pol-Rayleigh系统的簇发振动及其机理[J]. 振动工程学报, 2019, 06(32): 1067-1076.
Tang Jianhua, Li Xianghong, Shen Yongjun. Bursting oscillation and its mechanism of van der Pol-Rayleigh system under periodic excitation[J]. Journal of Vibration engineering, 2019, 06(32): 1067-1076.
[19] Bao Bocheng, Yang Qinfeng, Zhu Lei, et al.Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations[J]. International Journal of Bifurcation and Chaos, 2019, 29(10): 1950134.
[20] Ma Xindong, Cao Shuqian. Pitchfork-bifurcation- delay-induced bursting patterns with complex structures in a parametrically driven Jerk circuit system[J]. Journal of Physics A: Mathematical and Theoretical, 2018, 51(33): 335101.
[21] Proskurkin Ivan S, Smelov Pavel S, Vanag Vladimir K. Experimental investigation of the dynamical modes of four pulse-coupled chemical micro-oscillators[J]. Chemphyschem : a European journal of chemical physics and physical chemistry, 2019, 17(20): 2162-2165.
[22] Wei Mengke, Jiang Wenan, Ma Xindong, et al. Compound bursting dynamics in a parametrically and externally excited mechanical system[J]. Chaos, Solitons & Fractals, 2021, 143: 110605.
[23] 张绍华, 王聪, 张宏立. 永磁同步电动机的簇发振荡分析及协同控制[J]. 物理学报, 2020, 69(21): 205-213.
Zhang Shaohua, Wang Cong, Zhang Hongli. Bursting oscillation analysis and synergetic control of permanent magnet synchronous motor[J]. Acta Physica Sinica, 2020, 69(21): 205-213.
[24] Zhang Shaohua, Wang Cong, Zhang Hongli, et al. Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation[J]. Chaos, Solitons & Fractals, 2020, 141: 110355.
[25] Theodore Vo, Richard Bertram, Tasso J.Kaper. Multi- mode attractors and spatio-temporal canards[J]. Physica D: Nonlinear Phenomena, 2020, 411: 132544.
[26] Harun Baldemir, Daniele Avitabile, Krasimira Tsaneva- Atanasova. Pseudo-plateau bursting and mixed-mode oscillations in a model of developing inner hair cells[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 80: 104979.
[27] Li Qiuqi, Wang Yuhe, Maria Vasilyeva . Multiscale model reduction for fluid infiltration simulation through dual-continuum porous media with localized uncertainties[J]. Journal of Computational and Appled Mathematics, 2018, 336: 127-146.
[28] Fang Xinpeng, Chen Weisheng. Synchronization of complex dynamical networks with time-varying inner coupling[J]. Nonlinear Dynamics, 2016, 85: 13-21.
[29] 吴天一, 陈小可, 张正娣, 等. 非对称型簇发振荡吸引子结构及其机理分析[J]. 物理学报, 2017, 66(11): 35-45.
Wu Tianyi, Chen Xiaoke, Zhang Zhengdi, et al. Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms[J]. Acta Physica Sinica, 2017, 66(11): 35-45.
[30] 邢雅清, 陈小可, 张正娣, 等.多平衡态下簇发振荡产生机理及吸引子结构分析[J]. 物理学报, 2016, 65(9): 1-9.
Xing Yaqing, Chen Xiaoke, Zhang Zhengdi, et al. Mechanism of bursting oscillations with multiple equilibrium states and the analysis of the structures of the attractors[J]. Acta Physica Sinica, 2016, 65(9): 1-9.
[31] 张晓芳, 董颖涛, 韩修静, 等. 参外联合激励下一类混沌系统的动力学机理[J]. 振动与冲击, 2021, 40(01): 183-191.
Zhang Xiaofang, Dong Yintao, Han Xiujing, et al. Dynamic mechanism of a class of chaotic systems under combination of parametric and external excitation[J]. Journal of Vibration and Shock, 2021, 40(01): 183-191.
[32] Rony Cristiano, Enrique Ponce, Daniel J.Pagano, et al. On the Teixeira singularity bifurcation in a DC-DC power electronic converter[J]. Nonlinear Dynamics, 2019, 02(96): 1243-1266.
[33] Han Xiujing, Bi Qinsheng, Ji Peng, et al. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies[J]. Physical Review E: Statistical, Nonlinear & Soft Matter Physics, 2015, 01(92): 012911.

PDF(3433 KB)

Accesses

Citation

Detail

段落导航
相关文章

/