大型汽轮发电机定子端部绕组的数字化建模及振动特性分析

王頲1,2,王惠3,赵洋3,4,李星虹3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (7) : 143-153.

PDF(2863 KB)
PDF(2863 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (7) : 143-153.
论文

大型汽轮发电机定子端部绕组的数字化建模及振动特性分析

  • 王頲1,2,王惠3,赵洋3,4,李星虹3
作者信息 +

Digital mechanism modeling and vibration characteristic analysis for stator end winding of large turbo-generator

  • WANG Ting1,2, WANG Hui3, ZHAO Yang3,4, LI Xinghong3
Author information +
文章历史 +

摘要

以600MW大型汽轮发电机为研究对象。首先,建立了汽轮发电机定子端部绕组的高精度有限元模型并进行模态分析,得到与实测结果吻合较好的模态参数;然后,对定子端部绕组进行数字化机理建模,将双层绕组结构视为壳体,内外层支撑结构作为环肋与筋条,基于离散单元法可将端部绕组等效为叠层加筋加肋圆锥壳模型。借助适用于各种复杂弹性边界条件的改进傅里叶级数的瑞利-里兹法,建立了端部绕组的固有、受迫振动方程。通过计算得到端部绕组模态参数的解析解,并与有限元仿真结果进行对比,验证了所建立等效数字化机理模型的合理性与正确性,可为后续端部绕组电磁振动的研究打下基础。

Abstract

A high-precise finite element model of a 600MW large turbo-generator stator end winding is established. The modal parameters are obtained by modal analysis, which are in good agreement with the experimental data. Then, the digital mechanism model of stator end winding is set up. In the model, the shell is used to model double-layer winding and the supporting structures are treated as ring stiffeners and stringer stiffeners. Based on the discrete element method, the equivalent model of stiffened and ribbed conical shell for end winding can be established. After that, the natural and forced vibration equations of the end winding are established by Rayleigh- Ritz method with improved Fourier series which is suitable for different complex elastic boundary conditions. With the digital mechanism model, the modal parameters of end winding are determined. Comparing with the simulation results obtained by the finite element model, the rationality and correctness of the proposed digital mechanism model are verified.

关键词

定子端部绕组 / 模态参数 / 有限元分析 / 振动分析 / 机理模型

Key words

stator end winding / model parameters / finite element analysis / vibration analysis / mechanism model

引用本文

导出引用
王頲1,2,王惠3,赵洋3,4,李星虹3. 大型汽轮发电机定子端部绕组的数字化建模及振动特性分析[J]. 振动与冲击, 2023, 42(7): 143-153
WANG Ting1,2, WANG Hui3, ZHAO Yang3,4, LI Xinghong3. Digital mechanism modeling and vibration characteristic analysis for stator end winding of large turbo-generator[J]. Journal of Vibration and Shock, 2023, 42(7): 143-153

参考文献

[1] 唐贵基, 邓玮琪, 何玉灵. 不同种类气隙偏心故障对汽轮发电机转子不平衡磁拉力的影响[J]. 振动与冲击, 2017, 36(15): 1-8.
TANG Gui-ji, DENG Wei-qi, HE Yu-ling. Effect of different kinds of air-gap eccentricity faults on rotor UMP of a Turbo-generator[J]. Journal of Vibration and Shock, 2017,36(15): 1-8
[2] 张欣,何家俊,姚娜,等. 电机定子硅钢片磁致伸缩效应引起的振动[J]. 振动与冲击,2020, 39(14): 279-284.
ZHANG Xin, HE Jia-jun, YAO Na, et al. Vibration of a motor stator caused by the magnetostrictive effect of silicon steel sheets[J]. Journal of Vibration and Shock, 2020,39(14): 279-284.
[3] GB/T 20140-2016, 隐极同步发电机定子绕组端部动态特性和振动测量方法及评定[S].
GB/T 20140-2016, Measurement method and evaluation criteria of dynamic characteristic and vibration on stator end windings of cylindrical synchronous generators[S].
[4] Liao W, Gao Y G, Zhang H J. Analytical investigation of dynamic characteristic for stator end-winding of turbo-generator of 600MW[C]// International Conference on Measuring Technology and Mechatronics Automation. Wuhan, China: IEEE, 2009: 19-21.
[5] 何青, 崔志斌, 韩泓池. 汽轮发电机定子绕组端部模态测试与分析[J]. 电力与能源, 2017, 38(04): 467-471.
HE Qing, CUI Zhi-bin, HAN Hong-chi. Modal test and analysis of turbogenerator stator winding end[J]. Power & Energy, 2017, 38(04): 467-471.
[6] Zhao Y, Yan B, Zeng C, et al. Optimal scheme for structural design of large turbogenerator stator end winding[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1423-1432.
[7] 赵洋, 严波, 曾冲, 等. 大型汽轮发电机定子端部电磁力作用动态响应分析[J]. 电工技术学报, 2016,31(5): 199-206.
ZHAO Yang, YAN Bo, ZENG Chong, et al. Dynamic response analysis of large turbogenerator stator end structure under electromagnetic forces[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2016, 31(5): 199-206.
[8] Zhao Y, Yan B, Chen C L, et al. Parametric study on dynamic characteristics of turbogenerator stator end winding[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 129-137.
[9] 王益轩, 朱继梅. 大型汽轮发电机定子端部绕组的动态仿真模型[J]. 机械工程学报, 2005, 41(9): 217-222.
WANG Yi-xuan, ZHU Ji-mei. Numerical simulation model of stator winding end baskets of large turbo-generators[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2005, 41(9): 217-222.
[10] 王益轩, 朱继梅. 大型汽轮发电机定子端部绕组的动态优化设计[J]. 机械科学与技术, 2008, 27(2): 205-208.
WANG Yi-xuan, ZHU Ji-mei. Dynamic and optimal design of stator winding end baskets of large turbo-generators[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(2): 205-208.
[11] Wang Y X, Wang Y. Virtual prototype and modal analysis of stator system of large turbo-generator[J]. Applied Mechanics and Materials, 2012, 190-191: 232-236.
[12] Wang Y X, Wang Y, Qiu H F. Dynamic design and simulation analysis of 1000MW large turbo-generator[C]//International Conference on Mechatronics and Automation. Changchun, China: IEEE, 2009: 1650-1655.
[13] 张青雷, 段建国, 周莹, 等. 新型汽轮发电机定子端部固定结构动力学特性研究及计算工具开发[J]. 中国电机工程学报, 2018, 38(5): 4555-4565.
ZHANG Qing-lei, DUAN Jian-guo, ZHOU Ying, et al. Dynamic characteristics research and calculating tool development of fixed structure of stator end in a novel turbine generator[J]. Proceedings of the CSEE, 2018, 38(5): 4555-4565.
[14] 吴东东, 李娟. 大型汽轮发电机定子绕组三维模型建立及模态分析[J]. 电气技术, 2018, (4): 5-9.
WU Dong-dong, LI Juan. The establishment and the modal analysis of the three-dimensional modal of the stator winding of large turbo generator[J]. Electrical Engineering, 2018, (4): 5-9.
[15] 胡宇达, 邱家俊. 大型汽轮发电机定子端部绕组振动的叠层加筋圆锥壳模型[J]. 工程力学, 2005, 22(2): 189-194.
HU Yu-da, QIU Jia-jun. A stiffened laminated composite conical shell model for vibration of large genenrator end winding[J]. ENGINEERING MECHANICS, 2005, 22(2): 189-194.
[16] 王益轩. 大型汽轮发电机定子端部绕组的动力学建模[J]. 西北纺织工学院学报, 1999, 13(04): 339-343.
WANG Yi-xuan. Dynamical Modeling of Stator Winding End Baskets of Large Turbo-Generator[J]. Journal of Northwest Institute of Textile Science and Technology, 1999, (04): 339-343.
[17] 刘石, 仲继泽, 冯永新, 等. 使用磁流变阻尼器的大型汽轮发电机定子端部绕组振动控制[J]. 西安交通大学学报, 2013, 47(04): 39-43.
LIU Shi, ZHONG Ji-ze, FENG Yong-xin, et al. Magneto Rheological Technology of Vibration Isolation for Stator End-Winding of Large Generators[J]. JOURNAL OF XI’AN JIAOTONG UNIVERSITY, 2013, (04): 39-43.
[18] 何玉灵, 张文, 张钰阳, 等. 发电机定子匝间短路对绕组电磁力的影响[J]. 电工技术学报, 2020, 35(13): 2879-2888.
HE Yu-ling, ZHANG Wen, ZHANG Yu-yang, et al. Effect of stator inter-turn short circuit on winding electromagnetic forces in generators[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2020, 35(13): 2879-2888.
[19] 万书亭, 姚肖方, 豆龙江. 发电机定子端部绕组电磁力特性与鼻端扭矩计算[J]. 振动.测试与诊断, 2014, 34(05): 920-925+980.
WAN Shu-ting, YAO Xiao-fang, DOU Longjiang. Computation and characteristic analysis on electromagnetic force and nose torque of stator end windings in turbo-generator[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(05): 920-925+980.
[20] 张乐, 苗虹, 何启源, 等. 基于ANSYS的汽轮发电机定子绕组端部模态分析[J]. 重庆理工大学学报(自然科学), 2020, 34(09): 252-258.
ZHANG Le, MIAO Hong, HE Qi-yuan, et al. Modal Analysis of Stator Winding End of Turbogenerator Based on ANSYS[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(09): 252-258.
[21] 高丹, 王益轩, 梁瑜洋, 等. 大型汽轮发电机复合材料大锥环的设计与研究[J]. 大电机技术, 2015, (02): 18-22.
GAO Dan, WANG Yi-xuan, LIANG Yu-yang. The Design and Research of Composite Cone Ring for Large Turbo-generator[J]. Large Electric Machine and Hydraulic Turbine, 2015, (02): 18-22.
[22] 王震鸣. 复合材料力学和复合材料结构力学[M]. 北京: 机械工业出版社, 1991: 35-66.
WANG Zhen-ming. Composite mechanics and composite structural mechanics[M]. Beijing:CHINA MACHINE PRESS, 1991: 35-66.
[23] Wang Y X, Wang Y, Qiu H F. Dynamic design and simulation analysis of 1000MW large turbo-generator[C]//International Conference on Mechatronics and Automation. Changchun, China: IEEE, 2009: 1650-1655.
[24] 张爱国, 李文达, 杜敬涛, 等. 不同边界条件正交各向异性圆柱壳结构固有振动分析[J]. 哈尔滨工程大学学报, 2014, 35(4): 420-425.
ZHANG Ai-guo, LI Wen-da, DU Jingtao, et al. Natural vibration analysis of the orthotropic cylindrical shell structure with various boundary conditions[J]. Journal of Harbin Engineering University, 2014, 35(4): 420-425.
[25] David T., Yan Z G. Axisymmetric free vibration analysis of conical shells[J]. Engineering Structures, 1993, 15(2): 83-89.
[26] Lam K., Li H. Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell [J]. Journal of Sound and Vibration, 1999, 223(2): 171-195.
[27] Lee Y., Kim.Y. Effect of boundary conditions on natural frequencies for rotating composite cylindrical shells with orthogonal stiffeners[J]. Advances in Engineering Software, 1999, 30(9-11): 649-655.
[28] Zhao X., Liew K., Ng T. Y. Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners[J]. International Journal of Solids and Structures, 2002, 39(2): 529-545.
[29] 牛宁, 孙玲玲, 邢泽智, 等. 典型边界条件下任意截面纵肋加筋圆柱壳固有特性计算与分析[J]. 振动工程学报, 2021, 1-11.
NIU Ning, SUN Ling-ling, XING Ze-zhi, et al. Calculation and analysis of inherent properties of stiffened cylindrical shells with longitudinal stiffeners of arbitrary cross section under typical boundary conditions[J]. Journal of Vibration Engineering, 2021, 1-11.

PDF(2863 KB)

Accesses

Citation

Detail

段落导航
相关文章

/