车轮多边形激扰下轨道几何检测数据偏差规律及限值研究

魏子龙1,孙宪夫1,杨飞1,杨国涛2,罗国伟3,尤明熙1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (7) : 207-216.

PDF(3169 KB)
PDF(3169 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (7) : 207-216.
论文

车轮多边形激扰下轨道几何检测数据偏差规律及限值研究

  • 魏子龙1,孙宪夫1,杨飞1,杨国涛2,罗国伟3,尤明熙1
作者信息 +

Deviation laws and limit value of track geometry detection data under excitation of wheel polygon

  • WEI Zilong1, SUN Xianfu1, YANG Fei1, YANG Guotao2, LUO Guowei3, YOU Mingxi1
Author information +
文章历史 +

摘要

某高速综合检测列车出现因车轮失圆引起的轨道几何检测数据偏差问题,对科学评价轨道平顺状态造成不利影响。为此,在深入分析检测数据异常特征的基础上,建立车轮多边形激扰下的车辆-轨道耦合动力学模型,获取车轮多边形的阶数、幅值等参数对轨道检测数据偏差的影响规律,并提出适用于高速综合检测列车的车轮低阶多边形限值。结果表明,低阶车轮多边形是引起轨道几何检测数据偏差的重要激扰源,会对轨道高低、水平与扭曲不平顺的检测造成干扰,而轨向与轨距不平顺检测所受的影响很小;车轮镟修与磨耗引起的轮径变化对轨道几何检测精度的影响较小,高速综合检测列车车轮的最小允许轮径可与普通运营动车组保持一致;轨道检测系统所在轮对的车轮多边形径跳值不应超过0.10 mm。

Abstract

The wheel polygons of high-speed comprehensive inspection train induce undesired deviations of track irregularity inspection data, which imposes an adverse effect on evaluating the status of track geometry. Focusing on the issue, this study initially investigates the anomaly feature of track inspection data in both time and frequency domains, and then establishes the model capable of simulating the dynamic vehicle-track interaction induced by wheel polygons and the multi-criteria evaluation approach of wheel polygons. The influence of the order, depth of wheel polygons as well as the wheel radius on the deviation of track inspection data is extracted, and the limit of wheel polygons for high-speed comprehensive inspection train is proposed. The results indicate that the low order of wheel polygons plays an important role in the reliability of inspection data, especially for the items of longitudinal level, cross-level, and twist, whereas both track alignment and track gauge are rarely affected. The change in the wheel radius caused by tread wear and reprofiling does not influence much on the accuracy of measured data, so that the minimum wheel radius allowed for high-speed comprehensive inspection train can be similar with the ordinary operating EMUs. The limit of wheel polygons instrumented by the track irregularity inspection device should be set to 0.10 mm.

关键词

高速综合检测列车 / 车轮多边形 / 轨道几何检测 / 车辆-轨道耦合动力学

Key words

high-speed comprehensive inspection train / wheel polygon / track irregularity inspection / vehicle-track coupled dynamics

引用本文

导出引用
魏子龙1,孙宪夫1,杨飞1,杨国涛2,罗国伟3,尤明熙1. 车轮多边形激扰下轨道几何检测数据偏差规律及限值研究[J]. 振动与冲击, 2023, 42(7): 207-216
WEI Zilong1, SUN Xianfu1, YANG Fei1, YANG Guotao2, LUO Guowei3, YOU Mingxi1. Deviation laws and limit value of track geometry detection data under excitation of wheel polygon[J]. Journal of Vibration and Shock, 2023, 42(7): 207-216

参考文献

[1] 刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究 [J]. 振动与冲击, 2020, 39(16): 16-22.
LIU Huan, TAO Gong-quan, CAI Jing, et al. Influence of wheel polygon on locomotive wheel-rail dynamic response [J]. Journal of Vibration and Shock, 2020, 39(16): 16-22.
[2] BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219(3): 151-175.
[3] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展 [J]. 交通运输工程学报, 2020, 20(1): 102-119.
ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles [J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119.
[4] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels — a study of wheel polygonalization through simulation of three-dimensional wheel–rail interaction and wear [J]. Vehicle System Dynamics, 2005, 43(8): 539-559.
[5] JIN X, WU L, FANG J. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system [J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834.
[6] 陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究 [J]. 铁道学报, 2011, 33(1): 14-18.
CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels [J]. Journal of the China Railway Society, 2011, 33(1): 14-18.
[7] 马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析 [J]. 机械工程学报, 2012, 48(24): 106-111.
MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle [J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111.
[8] 崔大宾, 梁树林, 宋春元, 等. 高速车轮非圆化现象及其对轮轨行为的影响 [J]. 机械工程学报, 2013, 49(18): 8-16.
CUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out of round high-speed wheel and its influence on wheel/rail behavior [J]. Journal of Mechanical Engineering, 2013, 49(18): 8-16.
[9] WU Y, DU X, ZHANG H J, et al. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train [J]. Journal of Zhejiang University - SCIENCE A, 2017, 18(8): 579-592.
[10] 罗仁, 曾京, 邬平波, 等. 高速列车车轮不圆顺磨耗仿真及分析 [J]. 铁道学报, 2010, 32(5): 30-35.
LUO Ren, ZENG Jing, WU Ping-bo, et al. Simulation and analysis of wheel out-of-roundness wear of high-speed train [J]. Journal of the China Railway Society, 2010, 32(5): 30-35.
[11] 韩光旭, 张捷, 肖新标, 等. 高速动车组车内异常振动噪声特性与车轮非圆化关系研究 [J]. 机械工程学报, 2014, 50(22): 113-121.
HAN Guang-xu, ZHANG Jie, XIAO Xin-biao, et al. Study on high-speed train abnormal interior vibration and noise related to wheel roughness [J]. Journal of Mechanical Engineering, 2014, 50(22): 113-121.
[12] 陈美, 翟婉明, 閤鑫, 等. 高速铁路多边形车轮通过钢轨焊接区的轮轨动力特性分析 [J]. 科学通报, 2019, 64(29): 2573-2582.
CHEN Mei, ZHAI Wan-ming, GE Xin, et al. Analysis of wheel-rail dynamic characteristics due to polygonal wheel passing through rail weld zone in high-speed railways [J]. Chinese Science Bulletin, 2019, 64(29): 2573-2582.
[13] 刘鹏飞, 杨绍普, 刘永强, 等. 单轴滚动台车轮多边形磨耗激振试验及动态仿真[J]. 振动与冲击, 2022, 41(8): 102-109.
LIU Peng-fei, YANG Shao-pu, LIU Yong-qiang, et al. An excitation test and dynamic simulation of wheel polygon wear based on a rolling test rig of single wheelset [J]. Journal of Vibration and Shock, 2022, 41(8): 102-109.
[14] 李再帏, 吴鹏飞, 刘晓舟, 等. 高速铁路无砟轨道不平顺分形特征分析[J]. 振动与冲击, 2022, 41(6): 281-288.
LI Zai-wei, WU Peng-fei, LIU Xiao-zhou, et al. Analysis on fractal characteristics of the ballastless track irregularities of high-speed railways. Journal of Vibration and Shock, 2022, 41(6): 281-288.
[15] 王志臣, 宋颖, 杜彦良. 基于仿真的铁路车轮不圆度安全限值研究 [J]. 石家庄铁道大学学报(自然科学版), 2014, 27(2): 61-65.
WANG Zhi-chen, SONG Ying, DU Yan-liang. Safety management of out-of-round wheel profiles of high-speed railway based on adams/rail simulation [J]. Joural of Shijiazhuang Tiedao University (Natural Science Edition), 2014, 27(2): 61-65.
[16] 陈伟, 戴焕云, 罗仁. 高速列车车轮高阶多边形对车辆动力学性能的影响 [J]. 铁道车辆, 2014, 52(12): 4-8.
CHEN Wei, DAI Huan-yun, LUO Ren. Effect of high order ploygons of wheels for high speed trains on dynamics performance of vehicles [J]. Rolling Stock, 2014, 52(12): 4-8.
[17] 高建敏, 翟婉明. 高速铁路钢轨焊接区不平顺的动力效应及其安全限值研究 [J]. 中国科学:技术科学, 2014, 44(7): 697-706.
GAO Jian-min, ZHAI Wan-ming. Dynamic effect and safety limits of rail weld irregularity on high-speed railways [J]. Scientia Sinica Technologica, 2014, 44(7): 697-706.
[18] 翟婉明. 车辆-轨道耦合动力学(第四版) [M]. 北京: 科学出版社, 2015.
ZHAI Wan-ming. Vehicle-Track Coupled Dynamics (4th ed) [M]. Beijing: Science Press, 2015.
[19] 袁玄成, 朱胜阳, 袁站东, 等. 钢轨扣件弹条扣压力对轮轨系统垂向动力学响应的影响分析[J]. 振动与冲击, 2020, 39(24): 17-24.
YUAN Xuan-cheng, ZHU Sheng-yang, YUAN Zhan-dong, et al. Influence of rail fastener clamping force on vertical dynamic responses of wheel/rail system [J]. Journal of Vibration and Shock, 2020, 39(24): 17-24.

PDF(3169 KB)

Accesses

Citation

Detail

段落导航
相关文章

/