为解决某型机车燃油箱在流固耦合条件下冲击工况的仿真计算问题,用燃油箱小模型对比了虚拟质量法与瞬态法相结合等4种仿真方法的结果,并基于标准冲击谱进行了冲击试验,同时将仿真结果与试验值进行了对比验证。对比结果显示,虚拟质量法与瞬态法相结合的仿真方法分析流固耦合条件下箱体的冲击工况最为准确。以1/3箱油液高度工况为例,计算了该型燃油箱在冲击工况下的三向应力,计算结果表明在1/3箱油液高度的条件下,其冲击应力小于许用应力值,满足使用要求。研究结果对分析结构流固耦合条件下的冲击应力具有一定的指导意义。
Abstract
In order to solve the simulation problem of shock working condition of a locomotive fuel tank under fluid-structure coupling, the results of four simulation methods such as the combination of virtual mass method and transient method are compared with the small fuel tank model, and the shock test is carried out based on the standard shock spectrum. At the same time, the simulation results are compared with the test values. The comparison results show that the simulation method combining virtual mass method and transient method is the most accurate to analyze the shock working condition of the box under the condition of fluid-structure coupling. Taking the working condition of 1/3 tank oil height as an example, the three-dimensional stress of this type of fuel tank under shock working condition is calculated. The calculation results show that under the condition of 1/3 tank oil height, the shock stress is less than the allowable stress value, which meets the service requirements. The research results have certain guiding significance for analysing the shock stress of the structure under the condition of fluid-structure coupling.
关键词
流固耦合 /
燃油箱 /
虚拟质量法 /
瞬态法 /
冲击
{{custom_keyword}} /
Key words
fluid-solid coupling /
fuel tank /
virtual quality method /
transient method /
shock
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 费翔, 蒋伟康, 朱志勇, 等. 燃油箱油液晃动声的测量技术研究[J]. 振动与冲击, 2014, 33(24): 187-191.
FEI Xiang, JIANG Weikang, ZHU Zhiyong, et al. A signal processing method for car fuel tank sloshing noise[J]. Journal of vibration and shock, 2014, 33 (24): 187-191.
[2] Ibrahim R A. Liquid sloshing dynamics: Theory and Applica -tions[M]. Cambridge: Cambridge University Press, 2005.
[3] 刘上源. 机车燃油箱应力测试与寿命评估研究[D]. 成都: 西南交通大学, 2020.
LIU Shangyuan. Research on Stress Test and Life Assessment of Locomotive Fuel Tank[D]. Chengdu: Southwest Jiaotong University, 2020.
[4] 程贤福, 程安辉, 李晶, 等. 基于流固耦合的货车燃油箱动力学仿真分析及试验验证[J]. 噪声与振动控制, 2019, 39(01): 34-40.
CHENG Xianfu, CHENG Anhui, LI Jing, et al. Dynamic Simula -tion Analysis and Test Verification of Truck Fuel Tank based on Fluid-structure Coupling[J]. Noise and vibration control, 2019, 39 (01): 34-40.
[5] 宋杰城, 范翔宇, 刘建军, 等. 油气藏热-流-固耦合理论的研究进展[J/OL]. http://kns.cnki.net/kcms/detail/51.1183.TE. 20211222.1405.002.html, 2022-01-20.
SONG Jiecheng, FAN Xiangyu, LIU Jianjun, et al. Research progress of heat fluid solid coupling theory of oil and gas reservoir[J/OL]. http://kns.cnki.net/kcms/detail/51.1183.TE.20 211222.1405.002.html, 2022-01-20.
[6] JI Youjun, XU Huijin, ZHANG Junwei, et al. Analytical modeling on the geo-stress and casing damage prevention with the thermo-hydro-mechanical (THM) coupling of multi-field physics[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(4): 2719-2737.
[7] Estekanchi H E, Alembagheri M. Seismic analysis of steel liquid storage tanks by endurance time method[J]. Thin- walled Structures, 2012, 50 (1): 14-23.
[8] 魏冬冬, 姜毅, 赵良玉, 等. 液体火箭冷弹射系统推进剂晃动研究[J]. 弹箭与制导学报, 2021, 41 (03): 34-38.
WEI Dongdong, JIANG Yi, ZHAO Liangyu, et al. Research on Propellant Sloshing of Liquid Rocket Cold Launch System[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41 (03): 34-38.
[9] 董明海, 赵陈, 郭永升, 等. 流固耦合的船舶结构强度分析[J]. 舰船科学技术, 2021, 43 (14): 1-3.
DONG Minghai, ZHAO Chen, GUO Yongsheng, et al. Ship structure strength analysis of fluid-structure interaction[J]. Ship science and technology, 2021, 43 (14): 1-3.
[10] 张伟政, 赵鹏博, 张作丽, 等. 大口径蝶阀流固耦合特性及共振特性的研究[J]. 振动与冲击, 2021, 40(09): 278- 284+291.
ZHANG Weizheng, ZHAO Pengbo, ZHANG Zuoli, et al. Fluid- structure interaction and resonance characteristics of large dia -meter butterfly valve[J]. Journal of vibration and shock, 2021, 40 (09): 278-284 + 291.
[11] Hwang I S, Sang J P, Oh W, et al. Linear Compressor Discharge Valve Behavior Using a Rigid Body Valve Model and a FSI Valve Model[J]. International Journal of Refrigera -tion, 2017, 82:509-519.
[12] 杨昭, 张荣, 任文生. 基于流固耦合的汽车燃油箱振动耐久性分析[J]. 汽车实用技术, 2017 (15): 54-57.
YANG Zhao, ZHANG Rong, REN Wensheng. Vibration Durability Analysis of Automobile Fuel Tank Base on Fluid-Structure Coupling[J]. Automotive applied technology, 2017(15): 54-57.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}