复合材料充液管路流固耦合特性分析

吴江海,苏明珠,尹志勇,孙玉东

振动与冲击 ›› 2023, Vol. 42 ›› Issue (7) : 99-105.

PDF(1485 KB)
PDF(1485 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (7) : 99-105.
论文

复合材料充液管路流固耦合特性分析

  • 吴江海,苏明珠,尹志勇,孙玉东
作者信息 +

Fluid-structure interaction characteristics analysis of composite liquid-filled pipeline

  • WU Jianghai, SU Mingzhu, YIN Zhiyong, SUN Yudong
Author information +
文章历史 +

摘要

为研究编织复合材料充液管道流固耦合特性,本文采用传递矩阵法,从各向异性材料本构方程、物理方程与边界条件出发,建立复合材料管道一维流固耦合动力学模型。将模型退化成各向同性管进行计算方法验证,并进一步开展复合材料管FEM软件流固耦合验证。计算结果表明:本文计算结果与经典“4方程”模型及有限元三维模型结果一致。在证明了本文模型及计算方法的正确性后,进一步研究复合材料管中的铺设角度与纤维体积分数对充液管路固有频率及波数的影响。研究结果表明:提高增强材料体积分数,管路固有频率增加,管路传播波数降低;铺设角度增加,固有频率降低,管壁中传播波数增加。本文的研究结果可为充液管路的设计与控制提供参考。

Abstract

In order to study the fluid-structure coupling characteristics of woven composite laminate liquid-filled pipeline, a one-dimensional fluid-structure coupling dynamic model of pipeline is established based on the material constitutive equation and model physical equation by using the transfer matrix method. The model degenerates into isotropy for calculation method verification, and the fluid-structure coupling verification of composite FEM software is further carried out. The results show that the calculation results in this paper are consistent with the classical "4-equation" model and finite element three-dimensional model. After proving the correctness of the model and calculation method in this paper, the influence of the layer angle and volume fraction in the material pipe on the natural frequency and wavenumber of the liquid-filled pipeline is further studied and analyzed. The research results show that: increasing the volume fraction of the reinforcing material increases the natural frequency of the pipeline; the natural frequency decreases with the increase of laying angle; increasing the laying angle increases the wave number; on the contrary, with the increase of volume fraction, the wavenumber of pipeline decreases. The results of this paper can provide advice for the design and control of liquid-filled pipelines.

关键词

流固耦合 / 复合材料 / 充液管路 / 频域响应 / 传递矩阵法

Key words

Fluid-structure interaction / composite material / fluid-filled pipe / frequency response / transfer matrix method

引用本文

导出引用
吴江海,苏明珠,尹志勇,孙玉东. 复合材料充液管路流固耦合特性分析[J]. 振动与冲击, 2023, 42(7): 99-105
WU Jianghai, SU Mingzhu, YIN Zhiyong, SUN Yudong. Fluid-structure interaction characteristics analysis of composite liquid-filled pipeline[J]. Journal of Vibration and Shock, 2023, 42(7): 99-105

参考文献

[1]李鑫,王少萍.基于卡箍优化布局的飞机液压管路减振分析[J].振动与冲击,2013,32(01):14-20.
Li Xing, Wang Shao-ping. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamped layout[J]. Journal of Vibration and Shock,2013,32(01):14-20.
[2]付永领,荆慧强.弯管转角对液压管道振动特性影响分析[J].振动与冲击, 2013, 32(13):165-169.
Fu Yong-ling, Jing Hui-qiang. Elbow angle effect on hydraulic pipeline vibration characteristics[J]. Journal of Vibration and Shock ,2013, 32(13):165-169.
[3]吴江海,尹志勇,孙凌寒,孙玉东.船舶充液管路振动响应计算与试验[J].振动.测试与诊断,2019,39(04):832-837+908.
Wu Jiang-hai, Yin Zhi-yong, Sun Ling-han et al. Vibration response prediction and experiment of ship liquid piping system[J]. Journal of Vibration, Measurement & Diagnosis,2019,39(04):832-837+908.
[4]李帅军,李华峰,王小峰,柳贡民.任意分支管路流固耦合振动计算方法[J].振动与冲击,2018,37(07):52-55.
Li Shuai-jun, Li Hua-feng, Wang Xiao-feng et al. Vibration calculation method of multi-branched pipes with fluid-structure interaction[J]. Journal of Vibration and Shock, 2018, 37(07):52-55.
[5]陈星文,蔡奕霖,秦洁.核电厂主蒸汽管道流致声振动优化方法研究[J].振动与冲击,2021,40(24):299-304.
Chen Xing-wen, Cai Yi-lin, Qin Jie. A study on optimization of flow induced acoustic vibration in a main steam line[J]. Journal of Vibration and Shock,2021,40(24):299-304.
[6] Li S, Karney B W, Liu G. FSI research in pipeline systems–A review of the literature[J]. Journal of Fluids and Structures, 2015, 57: 277-297.
[7] Tijsseling A S. Fluid-structure interaction in liquid-filled pipe systems: a review[J]. Journal of Fluids and Structures, 1996, 10(2): 109-146.
[8]吴江海,孙玉东,尹志勇,苏明珠.充液管路轴向多吸振器波动特性研究[J].振动与冲击,2022,41(05):261-266.
Wu Jiang-hai, Sun Yu-dong, Yin Zhi-yong et al. Wave characteristics of axial multi-dynamic absorber in liquid-filled pipeline[J]. Journal of Vibration and Shock, 2022,41(05):261-266.
[9] Skalak R. An extension of the theory of water hammer[M]. Columbia University, 1954.
[10] Wiggert D C, Hatfield F J, Stuckenbruck S. Analysis of liquid and structural transients in piping by the method of characteristics[J]. ASME Journal of Fluids Engineering, 1987,109(02):161-165.
[11]Zhang L, Tijsseling S A, Vardy E A. FSI analysis of liquid-filled pipes[J]. Journal of sound and vibration, 1999, 224(1): 69-99.
[12] Li Q S, Yang K, Zhang L, et al. Frequency domain analysis of fluid–structure interaction in liquid-filled pipe systems by transfer matrix method[J]. International Journal of Mechanical Sciences, 2002, 44(10): 2067-2087.
[13] Zhu H, Wang W, Yin X, et al. Spectral element method for vibration analysis of three-dimensional pipes conveying fluid[J]. International Journal of Mechanics and Materials in Design, 2019, 15(2): 345-360.
[14]吴江海,尹志勇,孙玉东,周凌波,苏明珠.管路-圆柱壳耦合振动功率流与声辐射特性研究[J].中国造船,2021,62(02):145-153.
Wu Jiang-hai, Yin Zhi-yong, Sun Yu-dong et al. Research on Vibration Power Flow and Radiated Sound of Coupled Vibration of Pipeline and Cylindrical Shell[J], Shipbuilding of China,2021,62(02):145-153.
[15]吴江海,尹志勇,孙玉东,孙凌寒,安方.管路-船体耦合振动及水下声辐射研究[J].振动与冲击,2021,40(06):165-170.
Wu Jiang-hai, Yin Zhi-yong, Sun Yu-dong et al. Vibration and underwater sound radiation of a pipe-hull coupled system[J]. Journal of Vibration and Shock,2021,40(06):165-170.
[16]吴江海,尹志勇,王纬波,孙玉东.船用复合材料管路振动特性试验研究[J].舰船科学技术,2020,42(07):85-89+122.
Wu Jiang-hai, Yin Zhi-yong, Wang Wei-bo et al. Experiment analysis on the vibration characteristic of composite pipe[J], Ship Science and Technology,2020,42(07):85-89+122.
[17] Zhu H, Wu J. Free vibration of partially fluid-filled or fluid-surrounded composite shells using the dynamic stiffness method[J]. Acta Mechanica, 2020, 231(9): 3961-3978.
[18]Zhang X M. Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach[J]. Computer methods in applied mechanics and engineering, 2002, 191(19-20): 2057-2071.
[19] Liu J, He W, Xie D. Study on vibrational power flow propagation characteristics in a laminated composite cylindrical shell filled with fluid[J]. Shock and Vibration, Volume 2018, Article ID 4026140, 19 pages.
[20] Wiggert D C, Tijsseling A S. Fluid transients and fluid-structure interaction in flexible liquid-filled piping[J]. Applied Mechanics Reviews, 2001, 54(5): 455-481.
[21] Tijsseling A S. Water hammer with fluid–structure interaction in thick-walled pipes[J]. Computers & structures, 2007, 85(11-14): 844-851.
[22] You J H, Inaba K. Fluid–structure interaction in water-filled thin pipes of anisotropic composite materials[J]. Journal of Fluids and Structures, 2013, 36: 162-173.

PDF(1485 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/