周期性轻质多孔结构在能量吸收和振动方面的研究进展

张武昆1,2,谭永华2,3,高玉闪1,2,赵剑1,2,熊健4,王珺1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 1-19.

PDF(4041 KB)
PDF(4041 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 1-19.
论文

周期性轻质多孔结构在能量吸收和振动方面的研究进展

  • 张武昆1,2,谭永华2,3,高玉闪1,2,赵剑1,2,熊健4,王珺1,2
作者信息 +

Research progress on energy absorption properties and vibration of periodic lightweight porous structures

  • ZHANG Wukun1,2,TAN Yonghua2,3,GAO Yushan1,2,ZHAO Jian1,2,XIONG Jian4,WANG Jun1,2
Author information +
文章历史 +

摘要

周期性多孔结构以其轻质、高强等优异的力学性能和减振、能量吸收等多功能特性而引发诸多学者越来越多的关注。对近年来周期性超轻多孔结构及其填充混杂复合结构在能量吸收和振动性能方面的研究情况进行了综述。首先概述了超轻多孔结构在减振和抗冲击性能方面优势明显的胞元及结构形式;对于能量吸收方面,重点从准静态载荷、冲击载荷和应用三个角度评述了研究成果;针对振动特性,介绍了振动分析、减振隔振和振动特性应用方面的研究工作。最后展望了其后续的发展方向,包括基于增材制造的多孔结构的动态力学模型研究、超轻多孔结构的疲劳及损伤容限性能研究、多孔结构在多场及多种载荷下动态力学性能研究、面向吸能和减振的多孔结构胞元设计和填充材料组集优化方法、面向工程应用的多孔结构材料功能一体化设计等。

Abstract

Periodic porous structure has been gaining more and more attentions to many researchers because of its excellent mechanical properties such as lightweight, high strength and multi-functional characteristics such as vibration suppression and energy absorption. The research on the dynamic mechanical properties of lightweight porous structure and its filled hybrid or composite structures were reviewed in this paper in recent years, such as energy absorption and vibration. Firstly, the cells and structures forms of lightweight porous structures with obvious advantages in vibration damping and impact resistance were summarized. Secondly, in terms of energy absorption performance, the research results were concluded from three aspects: quasi-static loadings, impact loadings and their applications. Thirdly, according to the vibration characteristics, the research work on vibration analysis, vibration suppression or isolation and the applications of vibration characteristics were also introduced. Finally, the future development directions were prospected, including dynamic mechanical model of porous structure based on additive manufacturing, fatigue and damage tolerance performance of porous structures, dynamic mechanical properties of porous structures under multiple fields and loadings, the design methods and performance characterization of porous structures under impact and vibration resistance, and the design methods of porous structure-material-function-integration(MSFI) for engineering applications and so on.

关键词

超轻多孔结构 / 振动 / 抗冲击 / 能量吸收 / 研究进展

Key words

lightweight porous structures / vibration / impact resistance / energy absorption / research progress

引用本文

导出引用
张武昆1,2,谭永华2,3,高玉闪1,2,赵剑1,2,熊健4,王珺1,2. 周期性轻质多孔结构在能量吸收和振动方面的研究进展[J]. 振动与冲击, 2023, 42(8): 1-19
ZHANG Wukun1,2,TAN Yonghua2,3,GAO Yushan1,2,ZHAO Jian1,2,XIONG Jian4,WANG Jun1,2. Research progress on energy absorption properties and vibration of periodic lightweight porous structures[J]. Journal of Vibration and Shock, 2023, 42(8): 1-19

参考文献

[1] 方岱宁. 轻质点阵材料力学与多功能设计[M]. 北京:科学出版社, 2009. 1-20.
FANG D N. Mechanics of light lattice materials and multifunctional design[M]. Beijing: Science Press. 2009. 1-20. (in Chinese)
[2] 吴林志, 熊健, 马力. 复合材料点阵结构力学性能表征[M]. 北京: 科学出版社, 2015.1-15
WU L Z, XIONG J, MA L. Characterization of me-chanical properties of composite lattice structure [M]. Beijing: Science Press, 2015. 1-15. (in Chinese)
[3] GU D D, SHI X Y, POPRAWE R, et, al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science. 2021. 372(6545): eabg1487, 932.
[4] VASILIEV VV, BARYNIN VA, RAZIN AF. An-isogrid composite lattice structures-Development and aerospace applications[J]. Composite structures. 2012, 94: 1117-1127.
[5] 左蔚, 赵剑, 白静,等. 激光选区熔化菱形正十二面体点阵材料的承载与失效特性[J]. 火箭推进, 2020, 46(5): 87-93.
ZUO W, ZHAOJ, BAI J, et al. Research on bearing and disable properties of laser selective melting rhombohedral dodecahedral lattice materials[J]. Journal of rocket propulsion. 2020, 46(5):87-93. (in Chinese)
[6] 毛凯, 李昌奂, 张聃,等. 高压液氧涡轮泵孔型/蜂窝阻尼密封的设计[J]. 火箭推进. 2021. 47(2): 47-53.
MAO K, LI C H, ZHANG D, et al. Design of the hole-pattern / honeycomb seals in the high-pressure liquid oxygen turbo pump[J]. Journal of rocket pro-pulsion. 2021. 47(2): 47-53.(in Chinese)
[7] YIN S, WU L, YANG J, et al. Damping and low-velocity impact behavior of filled composite pyram-idal lattice structures[J]. Journal of Composite Materials. 2013. 48(15):1789-1800.
[8] WANG Y J, ZHANG Z J, XUE X M, et al. Experi-mental investigation on enhanced mechanical and damping performance of corrugated structure with metal rubber[J]. Thin-Walled Structures. 2020. 154:106816.
[9] Han B, Zhang Z J, Zhang Q C, et al. Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance[J]. Extreme Mechanics Letters. 2016. 10: 58-69.
[10] Yan L L, Yu B, Han B, et al. Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores[J]. Journal of Sandwich Structures & Materials. 2020. 22(4): 929-947.
[11] Zhang Y, Liu Q, He Z, et al. Dynamic impact re-sponse of aluminum honeycombs filled with Expanded Polypropylene foam[J]. Composites Part B: Engineering. 2019. 156: 17-27.
[12] KAO Y T, RAVINDRA A A, PAYNE N, et al. Low-velocity impact response of 3d-printed lattice struc-ture with foam reinforcement[J]. Composite Struc-tures. 2018. 192: 93-100.
[13] WU X Q, XIAO K L, YIN Q Y, et al. Experimental study on dynamic compressive behaviour of sand-wich panel with shear thickening fluid filled pyrami-dal lattice truss core[J]. International Journal of Me-chanical Sciences. 2018. 138: 467-475.
[14] CHEN J, ZHANG W, YAO M et, al. Vibration re-duction in truss core sandwich plate with internal nonlinear energy sink[J]. Composite Structures. 2018. 193: 180-188.
[15] ZHU D W, HUANG X C, HUA H X, et al. Vibration isolation characteristics of finite periodic tetra-chiral lattice coating filled with internal resonators[J]. Journal of Mechanical Engineering Science. 2016. 230(16): 2840-2850.
[16] GUO Z K, YANG X D, ZHANG W. Dynamic analy-sis, active and passive vibration control of double-layer hourglass lattice truss structures[J]. Journal of Sandwich Structures and Materials. 2020, 22(5): 1329-1356.
[17] 石姗姗. 仿生格栅增强蜂窝夹芯结构的设计、制造与分析[D].大连理工大学.
SHI S S. Design, manufacture and analysis of bionic grid reinforced honeycomb sandwich structure [D]. Dalian University of technology. 2015. (in Chi-nese)
[18] HAN B, QIN K, YU B, et al. Honeycomb–corrugation hybrid as a novel sandwich core for sig-nificantly enhanced compressive performance[J]. Materials & Design. 2016. 93: 271-282.
[19] Tao Y, Li W, Wei K, et al. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression[J]. Composites Part B: Engineering. 2019. 176: 107219.
[20] Sun F, Lai C, Fan H. In-plane compression behavior and energy absorption of hierarchical triangular lat-tice structures[J]. Materials & Design. 2016. 100: 280-290.
[21] Tsang H H, Raza S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy[J]. Composite Structures. 2018. 195: 199-210.
[22] ULLAH I, BRANDT M, FEIH S. Failure and energy absorption characteristics of advanced 3D truss core structures[J]. Materials & design. 2016. 92: 937-948.
[23] WANG P, YANG F, RU D H, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application[J]. Materials & Design. 2021, 210:110116.
[24] WANG P, YANG F, LI P H, et al. Design and additive manufacturing of a modified face-centered cubic lattice with enhanced energy absorption capability[J]. Extreme Mechanics Letters. 2021. 47(6202):101358.
[25] ZHANG H R, ZHOU H, ZHOU Z X, et al. Energy absorption diagram characteristic of metallic self-supporting 3D lattices fabricated by additive manu-facturing and design method of energy absorption structure[J]. International Journal of Solids and Structures. 2021. 226-227: 111082.
[26] 冯丽佳. 新型沙漏金属点阵结构的力学性能与强化机理[D]. 哈尔滨工业大学. 2017.
FENG L J. Mechanical properties and strengthening mechanism of a new hourglass metal lattice structure [D]. Harbin Institute of technology. 2017. (in Chinese)
[27] MENG L, SHI J X, YANG C, et al. An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting[J]. Extreme Mechanics Letters. 2020. 40: 100869.
[28] Gao Y, Wei X Y, Han X, et al. Novel 3D auxetic lat-tice structures developed based on the rotating rigid mechanism International Journal of Solids and Structures. 2021. 233:111232.
[29] Gao Y, WU Q Q, Wei X Y, et al. Composite tree-like re-entrant structure with high stiffness and controlla-ble elastic anisotropy. International Journal of Solids and Structures. 2020. 206:170-182.
[30] MIR M, ALI M N, SAMI J. Review of mechanics and applications of auxetic structures [J]. Advances in Materials Science and Engineering. 2014. 2014: 1-17.
[31] FAN J X, ZHANG L, WEI S S, et al. A review of additive manufacturing of meta-materials and devel-oping trends[J]. Materials today. 2021. 50: 303-328.
[32] CHENX Y, MOUGHAMES J, JI Q X, et al. Optimal isotropic, reusable truss lattice material with near-zero Poisson's ratio [J]. Extreme Mechanics Letters. 2020. 41: 101048.
[33] WANG Z G. Recent advances in novel metallic hon-eycomb structure[J]. Composite Part B: Engineering. 2019. 166: 731-741.
[34] YUAN X, CHEN M, YAO Y, et al. Recent progress in the design and fabrication of multifunctional structures based on meta-materials[J]. Current Opin-ion in Solid State and Materials Science. 2021. 25(1):100883.
[35] WU W W, HU W X, QIAN G A, et al. Mechanical design and multifunctional applications of chiral mechanical meta-materials: A review[J]. Materials and Design. 2019: 180: 107950.
[36] TANCOGNE D T, DIAMAN T M, GORJI M B, et al. 3D plate-lattices: an emerging class of low-density meta-material exhibiting optimal isotropic stiffness[J]. Advanced Materials. 2018. 30(45):1803334.
[37] MACONACHIE T, LEARY M, LOZANOVSKI B, et al. SLM lattice structures: properties, performance, applications and challenges[J]. Materials & design. 2019. 183:108137.
[38] AL-KETAN O, AL-RUB R. Multifunctional me-chanical meta-materials based on triply periodic minimal surface lattices[J]. Advanced Engineering Materials. 2019. 21(10): 524.
[39] 朱凌雪. 芯体截面梯度变化的点阵夹层结构吸能特性研究[J]. 振动与冲击. 2018(14):115-121.
ZHU L H. Energy absorption characteristics of lattice truss structure with gradient cross-section core mem-ber [J]. Journal of vibration and shock. 2018 (14): 115-121(in Chinese)
[40] EVANS A G, HE M Y, Deshpande V S, et al. Con-cepts for enhanced energy absorption using hollow micro-lattices[J]. International Journal of Impact Engineering. 2010. 37(9): 947-959.
[41] TANCOGNED T, MOHR D. Stiffness and specific energy absorption of additively-manufactured metallic bcc meta-materials composed of tapered beams[J]. International journal of mechanical sciences. 2018. 141: 101-116.
[42] QI D X, YU H B, LIU M, et al. Mechanical behav-iors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams[J]. International Journal of Mechanical Sciences. 2019, 163:105091.
[43] YANG C X, LIA Q M. Advanced lattice material with high energy absorption based on topology opti-mization[J]. Mechanics of Materials. 2020. 148: 103536.
[44] SUN F F, ZHENG Q, FAN H L, et al. The mechani-cal properties of hierarchical truss-walled lattice ma-terials[J]. International journal of applied mechanics. 2017. 9(02): 1750027.
[45] KOOISTRA G W, DESHPANDE V, WADLEY H N G. Hierarchical corrugated core sandwich panel con-cepts[J]. Journal of Applied Mechanics. 2007. 74(2): 259-268.
[46] 郑青. 新型格栅结构设计及力学性能研究[D]. 国防科学技术大学. 2017.
ZHENG Q. Research on structural design and me-chanical properties of new grid [D]. University of national defense science and technology. 2017. (in Chinese)
[47] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报. 2020, 41(6): 749-760.
XIONG J, DU Y T, YANG W, et al. Research Pro-gress on Design and Mechanical Properties of Light-weight Composite Sandwich Structures[J]. Journal of Astronautics. 2020. 41(6): 749-760. (in Chinese)
[48] WU Q Q, VAZIRI A, ASL M E, et al. Lattice materials with pyramidal hierarchy: systematic analysis and three dimensional failure mechanism maps[J]. Journal of the Mechanics & Physics of Solids. 2019. 125(4):112-144.
[49] SCHAEDLER T A, RO C J, SORENSEN A E, et al. Designing metallic micro lattices for energy ab-sorber applications[J]. Advanced Engineering Mate-rials. 2014. 16(3):276-283.
[50] CHEN L., CERNICCHIA., CERNICCHI M D., et, al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading [J]. Materials and Design. 2019. 162: 106-118.
[51] Al-SAEDI DS; MASOOD, S.H.; FAIZAN U R, M. Mechanical properties and energy absorption capa-bility of functionally graded F2BCC lattice fabricat-ed by SLM[J]. Materials and Design. 2018. 144: 32–44.
[52] HUANG Y J, XUE Y Y, WANG X F, et al. Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures[J]. Materials Letters, 2017. 202: 55-58.
[53] HUANG Y J, XUE Y Y, WANG X F, et al. Me-chanical behavior of three-dimensional pyramidal aluminum lattice materials[J]. Materials Science & Engineering A, 2017, 696(1): 520-528.
[54] LI C L, LEI H S, LIU Y B, et al. Crushing behavior of multi-layer metal lattice panel fabricated by selec-tive laser melting[J]. International Journal of Me-chanical Sciences. 2018(145): 389-399.
[55] HOU S J, SHU C F, ZHAO S Y, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading[J]. Compo-site Structures. 2015(126): 371-385.
[56] ZHANG Z, LEI H S, XU M C, et al. Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels[J]. Materials & Design, 2019, 178: 107858.
[57] JISHI HZ, UMER R, CANTWELL WJ. The fabrication and mechanical properties of novel composite lattice structures[J]. Materials and Design. 2016, 91, 286-293.
[58] TAN Z L, BAI L S, BAI B Z, et al. Fabrication of lattice truss structures by novel super-plastic forming and diffusion bonding process in a titanium alloy[J]. Materials and Design. 2016, 92: 724-730.
[59] JIANG S, SUN FF, ZHANG X R. Interlocking or-thogrid: An efficient way to construct lightweight lattice core sandwich composite structure[J]. Composite Structures, 2017, 176 (15): 55-71.
[60] WU Q Q, Ma L, WU L Z, et al. A novel strengthen-ing method for carbon fiber composite lattice truss structures[J]. Composite Structures, 2016, 153: 585-592.
[61] YAN L, Chou W N, JAYARAMAN K. Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes[J]. Materials & Design. 2014. 56: 528- 41.
[62] YOO SH, CHANG SH, SUTCLIFFE MPF. Com-pressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing struc-tures[J]. Composites Part A: Applied Science and Manufacturing. 2010. 41(3): 427-434.
[63] NIA AA, SADEGHI MZ. The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study[J]. Materials & Design. 2010. 31(3): 1216-1230.
[64] YAN L L, YU B, HAN B, et al. Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores[J]. Composites Science and Technology.2013. 86(7):142-148.
[65] HAMMETTER C I, ZOK F W. Compressive Re-sponse of pyramidal lattices embedded in foams[J]. Journal of Applied Mechanics. 2014, 81(1): 011006.
[66] YIN S, WU L Z, MA L, et al. Hybrid truss concepts for carbon fiber composite lattice structure[J]. Com-posites Part B: Engineering, 2012. 43(4). 1749-1755.
[67] HAN B, WANG W B., ZHANG ZJ, et, al. Perfor-mance enhancement of sandwich panels with honey-comb-corrugation hybrid core[J]. Theoretical and Applied Mechanics Letters. 2016. 6(1): 54–59.
[68] XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials[J]. materials. 2020. 13(18): 4083-4083.
[69] LIU Q, FU J, WANG J, et al. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam[J]. Composites Part B: Engineering, 2017. 130:236-247.
[70] Jin N, Wang F, Wang Y, et al. Failure and energy absorption characteristics of four lattice structures under dynamic loading[J]. Materials & Design, 2019. 169: 107655.
[71] TANCOGNE-DEJEAN T, SPIERINGS A B, MOHR D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading[J]. Acta Materialia, 2016. 116: 14-28.
[72] AL-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive Manufacturing. 2018. 19: 167-183.
[73] CHOY S Y, SUN C N, LEONG K F, et al. Compres-sive properties of functionally graded lattice struc-tures manufactured by selective laser melting[J]. Ma-terials & Design. 2017, 131: 112-120.
[74] CETIN E, BAYKASOĞLU C. Energy absorption of thin-walled tubes enhanced by lattice structures[J]. International Journal of Mechanical Sciences. 2019. 157: 471-484.
[75] XU S, BEYNON J H, RUAN D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs[J]. Composite Structures. 2012. 94(8): 2326-2336.
[76] Du Y, Keller T, Song C, et al. Origami-inspired car-bon fiber-reinforced composite sandwich materials–Fabrication and mechanical behavior[J]. Composites Science and Technology. 2021. 205: 108667.
[77] Hu B, Wu L Z, Xiong J, et al. Mechanical properties of a node-interlocking pyramidal welded tube lattice sandwich structure[J]. Mechanics of Materials. 2019. 129: 290-305.
[78] Wei X, Li D, Xiong J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Tech-nology. 2019. 184: 107878.
[79] Alia R A, Al-Ali O, Kumar S, et al. The energy-absorbing characteristics of carbon fiber-reinforced epoxy honeycomb structures[J]. Journal of Compo-site Materials. 2019. 53(9): 1145-1157.
[80] Xiong J, Vaziri A, Ghosh R, et al. Compression be-havior and energy absorption of carbon fiber rein-forced composite sandwich panels made of three-dimensional honeycomb grid cores[J]. Extreme Me-chanics Letters. 2016. 7: 114-120.
[81] DHARMASENA K P, WADLEY H, XUE Z, et al. Mechanical response of metallic honeycomb sand-wich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering. 2008. 35(9): 1063-1074.
[82] QIU X, DESHPANDE V, FLECK N. Impulsive loading of clamped monolithic and sandwich beams over a central patch[J]. Journal of the Mechanics & Physics of Solids. 2005. 53(5): 1015-1046.
[83] 赵桂平, 卢天健. 多孔金属夹层板在冲击载荷作用下的动态响应[J]. 力学学报. 2008. 40(2): 194-206.
ZHAO G P, LU T J. Dynamic response of porous metal sandwich panels under impact load [J]. Journal of mechanics. 2008. 40 (2): 194-206. (in Chinese)
[84] ZUHAL O, EVERTH H, ANDREW T, et al. Energy absorption in lattice structures in dynamics: Experi-ments[J]. International Journal of Impact Engineer-ing. 2016. 89(5):49-61.
[85] WANG DM. Cushioning properties of multi-layer corrugated sandwich structures. Journal of Sandwich Structures & Materials. 2009. 11(1): 57-66.
[86] PALOMBA G, EPASTO G, CRUPI V, et al. Single and double-layer honeycomb sandwich panels under impact loading[J]. International Journal of Impact Engineering. 2018. 12:77-90.
[87] ANDREW J T, MOHAMMED A R, AHSAN M, et al. Low velocity impact behavior of sandwich struc-tures with additively manufactured polymer lattice cores[J]. Journal of Materials Engineering and Per-formance. 2018. 27: 2505-2512.
[88] 周昊, 郭锐, 刘荣忠,等. 碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J]. 复合材料学报. 2019.036(005): 1226-1234.
ZHOU H, GUO R, LIU R Z, et al. Simulation on dy-namic responses of carbon fiber reinforced polymer composite sandwich plates with square honeycomb cores subjected to water blast[J]. Acta Materiae Composite Sinica. 2019. 036(005): 1226-1234. (in Chinese)
[89] YAZICI M., WRIGHT J., BERTIN D., et al. Experi-mental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading[J]. Composite Structures. 2014. 110: 98-109.
[90] NOVAK N , STARCEVIC L , VESENJAK M , et al. Blast response study of the sandwich composite pan-els with 3D chiral auxetic core[J]. Composite Struc-tures. 2019. 210:167-178.
[91] IMBALZANO G , LINFORTH S , NGO T D , et al. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs[J]. Composite Structures. 2017. 183: 242-261.
[92] Chen G, Cheng Y, Zhang P, et al. Design and model-ling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading[J]. Journal of Sandwich Structures and Materials. 2021. 23(8): 3574-3605.
[93] LIU Q, SHEN H, WU Y, et al. Crash responses un-der multiple impacts and residual properties of CFRP and aluminum tubes. Composite Structures. 2018. 194: 87-103.
[94] VAZIRI A, XUE Z, HUTCHINSON J W. Metal sandwich plates with polymer foam-filled cores[J]. Journal of Mechanics of Materials & Structures. 2006. 1(1):97-127.
[95] WANG Y, ZHAI X, YAN J, Ying W, Wang W. Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading[J]. Thin-Walled Structures. 2018. 131: 566-576.
[96] MOZAFARI H, MOLATEFI H, CRUPI V, et al. In plane compressive response and crushing of foam filled aluminum honeycombs[J]. Journal of Compo-site Materials. 2015. 49(26): 3215-3228.
[97] ZHANG P, CHENG Y S, LIU J. et al. Experimental study on the dynamic response of foam-filled corru-gated core sandwich panels subjected to air blast loading[J]. Composites Part B. 2016. 105: 67-81.
[98] ZHANG G Q, WANG B, MA L, et al. Energy ab-sorption and low velocity impact response of polyu-rethane foam filled pyramidal lattice core sandwich panels[J]. Composite Structures. 2014. 108: 304-310.
[99] LI G, MUTHYALA V. Impact characterization of sandwich structures with an integrated orthogrid stiffened syntactic foam core[J]. Composites Science and Technology. 2008. 68(9): 2078-2084.
[100] BURLAYENKO V N, SADOWSKI R. Effective elastic properties of foam-filled honeycomb cores of sandwich panels[J]. Composite Structures. 2010. 92(12): 2890-2900.
[101] MAHMOUDABADI M Z, SADIGHI M. A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb – Theoretical and ex-perimental[J]. Materials Science & Engineering A. 2011. 530: 333-343.
[102] 郭锐, 周昊, 刘荣忠,等. 陶瓷棒填充点阵金属夹层结构的制备及抗侵彻实验[J]. 复合材料学报. 2016. 033(004):  921-928.
GUO R, ZHOU H, LIU R Z, et al. Preparation and anti-penetration experiment of ceramic rod filled lat-tice metal sandwich structure[J]. Acta Materiae Com-posite Sinica. 2016. 033(004): 921-928. (in Chinese)
[103] LI B, TAN K T. Response of meta-lattice truss core sandwich structures subjected to impulsive load-ings[C]// Conference Proceeding for 11th Interna-tional Conference on Sandwich Structures, ICSS-11. 2016.
[104] YIN S, LI J, LIU B, et al. Honeytubes: hollow lattice truss reinforced honeycombs for crushing protection[J]. Composite Structures. 2016. 160: 1147-1154.
[105] LIU, J F, WANG Z G, HUI D, et al. Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes[J]. Composites, Part B. Engineering. 2018. 145: 261-269.
[106] AJDARI A, NAYEB H H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures[J]. Inter-national Journal of Solids & Structures. 2011. 48(3-4): 506-516.
[107] SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs-a finite element study[J]. Com-posite Structures. 2013. 98(3): 282-293.
[108] 朱凌雪, 王同银, 朱晓磊. 基于梯度化因子功能梯度点阵夹层结构优化设计[J]. 振动与冲击. 2018. 37(23):106-111+118.
ZHU L H, WANG T Y, ZHU X L. Optimization de-sign of a functionally graded lattice sandwich struc-ture based on gradient factor[J]. Journal of vibration and shock. 2018. 37(23):106-111+118. (in Chinese)
[109] ASLIAH S, ABDUL H A, SHAHRUM A. A review on integration of lightweight gradient lattice struc-tures in additive manufacturing parts[J]. Advances in Mechanical Engineering. 2020. 12(6): 1-21.
[110] 倪长也,金峰,卢天健,等. 3 种点阵金属三明治板的抗侵彻性能模拟分析[J]. 力学学报. 2010. 42(6): 1125-1137.
NI C Y, JIN F, LU T J, et al. Penetration and perforation performance of three pyramidal lattice-cored sandwich plates: numerical simulations[j]. Chinese journal of theoretical and applied mechanics. 2010. 42(6): 1125-1137 (in Chinese)
[111] 郭锐, 张钱城, 周昊,等. 轻质波纹夹层结构的制备及其多功能应用研究进展[J]. 力学与实践. 2017. 039(003):226-239.
GUO R, ZHANG Q C, ZHOU H, et al. Progress in manufacturing lightweight corrugated sandwich structures and their multifunctional applications[J]. Mechanics in Engineering. 2017. 039(003): 226-239. (in Chinese)
[112] 张钱城, 郝方楠, 李裕春,等. 爆炸冲击载荷作用下车辆和人员的损伤与防护[J]. 力学与实践. 2014. 36(005):527-539.
ZHANG Q C, HAO F N, LI Y C, et al. Research progress in the injury and protection to vehicle and passengers under explosive shock loading[J]. Mechanics in Engineering. 2014. 36(005): 527-539. (in Chinese)
[113] Tarlochan F. Sandwich structures for energy absorp-tion applications: a review[J]. Materials. 2021. 14(16): 4731.
[114] 易建坤, 马翰宇, 朱建生,等. 点阵金属夹芯结构抗爆炸冲击问题研究的综述[J]. 兵器材料科学与工程. 2014. 037(002): 116-120.
YI J K, MA H Y, ZHU J S, et al. Review of research on explosion impact resistance of lattice metal sand-wich structure[J]. Ordnance Material Science and Engineering. 2014. 037(002): 116-120. (in Chinese)  
[115] LI M, DENG Z Q, LIU R Q, et al. Li M , Deng Z , Liu R , et al. Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander[J]. International Journal of Crashworthiness. 2011. 16(4): 411-419.
[116] BAUGHMANR H, SHACKLETTE J M, ZAKHIDOV A A, et al. Negative Poisson's ratios as a common feature of cubic metals[J]. Nature. 1998. 392: 362-365.
[117] 王陶. 负泊松比结构力学特性研究及其在商用车耐撞性优化设计中的应用[D]. 南京理工大学, 2019.
WANG T. Study on structural mechanical characteristics of negative Poisson's ratio and its application in crashworthiness optimization design of commercial vehicles[D]. Nanjing University of technology, 2019 (in Chinese).
[118] PERFETTO S, SCHUBERT M, MAYER D, et al. Development and design of multifunctional com-posite structures for satellite applications[C]// 15th European Conference on Spacecraft Structures and Mechanical Testing, Netherlands: Noordwijk, 2018.
[119] 张相闻. 船舶宏观负泊松比效应蜂窝减振及防护结构设计方法研究[D]. 上海交通大学, 2017.
ZHANG X W. Study on design method of honey-comb damping and protective structure for ship mac-ro negative Poisson's ratio effect[D]. Shanghai Jiao tong University, 2017(in Chinese).
[120] 娄佳. 复合材料点阵夹芯结构的弯曲、屈曲和振动特性研究[D].哈尔滨工业大学, 2013.
LOU J. Research on bending, buckling and vibration characteristics of composite lattice sandwich struc-ture [D]. Harbin University of technology. 2013(in Chinese).
[121] XU M H, QIU Z P. Free vibration analysis and opti-mization of composite lattice truss core sandwich beams with interval parameters[J]. Composite Structures. 2013. 106:85-95.
[122] ZHANG H, SUN F F, FAN H L, et al. Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder[J]. Composites Science and Technology. 2014. 100: 26-33.
[123] LI D H, WANG R P, QIAN R L, et al. Static re-sponse and free vibration analysis of the composite sandwich structures with multi-layer cores[J]. Inter-national Journal of Mechanical Sciences. 2016, 111-112: 101-115.
[124] CHEN J E, ZHANG W, SUN M, et al. Free vibration and hardening behavior of truss core sandwich beam[J]. Shock and Vibration.2016. 4: 7348518.1-7348518.13.
[125] SUI Q Q, LAI C L, FAN H L. Vibration behaviors of 1d lattice truss structures under different con-strains[C]. 21st International Conference on Compo-site Materials, Xi’an, 20-25th August 2017.
[126] GUO Z K, LIU C C, LI F M. Vibration analysis of sandwich plates with lattice truss core[J]. Mechanics of Advanced Materials and Structures. 2017. 26(5): 424-429.
[127] ZHAO Z, WEN S R, LI F M. Vibration analysis of multi-span lattice sandwich beams using the as-sumed mode method[J]. Composite Structures. 2018, 185: 716-727.
[128] CHEN J E, ZHANG W, SUN M, et al. Free vibration analysis of composite sandwich plates with different truss cores[J]. Mechanics of Advanced Materials and Structures. 2018. 25: 701-713.
[129] NASRULLAH A, SANTOSA S P, DIRGANTARA T . Design and optimization of crashworthy compo-nents based on lattice structure configuration[J]. Structures. 2020, 26:969-981.
[130] KOHASKA K, USHIJIMA K, CANTWELL W J. Study on vibration characteristics of sandwich beam with BCC lattice core[J]. Materials Science & Engi-neering B. 2021. 264: 114986.
[131] MONKOVA K, VASINA M., ZALUDEK M., et al. Mechanical vibration damping and compression properties of a lattice structure[J]. Materials. 2021. 14: 61502.
[132] LIU L X, YANG W Y, CHAI Y Y, et al. Vibration and thermal buckling analyses of multi-span compo-site lattice sandwich beams[J]. Archive of Applied Mechanics. 2021. 91: 2601-2616.
[133] WANG X, ZHAO Z Y, LI L, et al. Free vibration behavior of Ti-6Al-4V sandwich beams with corru-gated channel cores: Experiments and simulations[J]. Thin-Walled Structures, 2019. 135: 329-340.
[134] LI S, YANG J S, WU L Z, et al. Vibration behavior of metallic sandwich panels with Hourglass truss cores[J]. Marine Structures. 2019(63): 84-98.
[135] GUO Z K, HU G B, JIANG J C, et al. Theoretical and experimental study of the vibration dynamics of a 3d-printed sandwich beam with an hourglass lattice truss core[J]. Frontiers in mechanical engineering. 2021. 7: 651998.
[136] SIMSEK U, ARSLAN T, KAVAS B, et al. Paramet-ric studies on vibration characteristics of triply peri-odic minimum surface sandwich lattice structures[J]. The International Journal of Advanced Manufactur-ing Technology.2020. 115(3): 675-690.
[137] KHAKALO S, BALOBANOV V, NIIRANEN J. Modelling size-dependent bending, buckling and vi-brations of 2D triangular lattices by strain gradient elasticity models: Applications to sandwich beams and auxetics[J]. International Journal of Engineering Science. 2018. 127: 33-52.
[138] ZHAO J, CHOE K, SHUI C, et al. Free vibration analysis of laminated composite elliptic cylinders with general boundary conditions[J]. Composites Part B: Engineering. 2019. 158: 55-66.
[139] ZHOU Z W, CHEN M X, JIA W C, et al. Free and forced vibration analyses of simply supported Z-reinforced sandwich structures with cavities through a theoretical approach[J]. Composite Structures. 2020. 243: 112182.
[140] XU G D, ZENG T, CHEN S, et al. Free vibration of composite sandwich beam with graded corrugated lattice core[J]. Composite Structures. 2019. 229:111466-111466.
[141] LI FM, LYU XX. Active vibration control of lattice sandwich beams using the piezoelectric actua-tor/sensor pairs[J]. Composites Part B: Engineering. 2014. 67: 571–578.
[142] LI M., LI F.M., JING X.J., Active vibration control of composite pyramidal lattice truss core sandwich plates[J]. Journal of aerospace engineering. 2018. 31: 04017097.
[143] XIE C H, WU Y, LIU Z S, et al. Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order PDμ algorithm[J]. Composite Structures. 2018. 198: 126-134.
[144] CHAI Y Y, LI F M, SONG Z G, et al. Analysis and active control of nonlinear vibration of composite lattice sandwich plates[J]. Nonlinear Dynamics. 2020. 102(4): 2179-2203.
[145] SONG Z.G., Li F. M. Aero elastic analysis and active flutter control of nonlinear lattice sandwich beams[J]. Nonlinear Dynamics. 2014. 76(1):57-68.
[146] SONG Z.G., Li F. M. Aero-thermo elastic analysis of lattice sandwich composite panels in supersonic airflow[J]. Meccanica. 2016. 51(4): 877-891.
[147] SONG Z.G., LI F.M., Flutter and buckling characteristics and active control of sandwich panels with triangular lattice core in supersonic airflow[J]. Composites Part B Engineering. 2017. 108:334-344.
[148] HOZHABR M, SARA N. Vibration analysis of foam filled honeycomb sandwich panel – numerical study[J]. Australian Journal of Mechanical Engineer-ing. 2019. 17(3): 191-198.
[149] ZHANG Z J, HAN B, ZHANG Q C, et al. Free vi-bration analysis of sandwich beams with honey-comb-corrugation hybrid cores[J]. Composite Struc-tures. 2017. 171: 335-344.
[150] YAO G, LI F M. Nonlinear primary resonances of lattice sandwich beams with pyramidal truss core and viscoelastic surfaces[J]. Acta Mechanica. 2018, 229: 4091-4100.
[151] 杨金水. 新型轻质复合材料夹芯结构的振动阻尼特性研究[D]. 哈尔滨工业大学, 2017.
YANG J S. Study on vibration damping characteris-tics of new lightweight composite sandwich struc-ture[D]. Harbin Institute of technology, 2017(in Chi-nese).
[152] FLORENCE A, JASWIN M A. Vibration and Flex-ural Characteristics of Hybrid Honeycomb Core Sandwich Panels filled with different Energy Absorbing Materials[J]. Materials Research Express. 2019. 6: 075326.
[153] HUANG Z C, WANG X G, WU N X, et al. A finite element model for the vibration analysis of sandwich beam with frequency-dependent viscoelastic material core[J]. materials. 2019. 12(20): 3390.
[154] WANG X, LI X, YU R P, et al. Enhanced vibration and damping characteristics of novel corrugated sandwich panels with polyurea-metal laminate face sheets[J]. Composite Structures. 2020. 251: 112591.
[155] WANG R, SHANG J, XIN L, et al. Vibration and damping characteristics of 3D printed Kagome lat-tice with viscoelastic material filling[J]. Scientific Reports. 2018. 8(1): 9604.
[156] XIAO F, CHEN Y., HUA H. X., Comparative study of the shock resistance of rubber protective coatings subjected to underwater explosion[J]. Journal of Offshore Mechanics and Arctic Engineering. 2014. 136(2): 021402.1-021402.12.
[157] RZ A, XNL B, GKH B, et al. A chiral elastic met-amaterial beam for broadband vibration suppression [J]. Journal of Sound and Vibration. 2014. 333(10):2759-2773.
[158] CHEN J.E., ZHANG W., YAO M.H., et, al. Vibra-tion suppression for truss core sandwich beam based on principle of nonlinear targeted energy transfer[J]. Composite Structures. 2017. 171: 419-428
[159] JIN Y, SHI Y, YU G C, et al. A multifunctional hon-eycomb meta-structure for vibration suppression[J]. International Journal of Mechanical Sciences. 2020. 188: 105964.
[160] XU S, HUANG X, DU Z, et al. Study on the appli-cation and optimization of trichiral raft in a floating raft system[C]. Proceedings of the Institution of Me-chanical Engineers, Part C: Journal of Mechanical Engineering Science. 2016. 230(11): 1819-1829.
[161] GHAHFAROKHI D S, RAHIMI G. Buckling load prediction of grid-stiffened composite cylindrical shells using the vibration correlation technique[J]. Composites Science and Technology. 2018. 167: 470-481.
[162] GHAHFAROKHI D S, RUZBAHANI M A, RAHIMI G. Vibration correlation technique for the buckling load prediction of composite sandwich plates with iso-grid cores[J]. Thin-Walled Structures. 2019. 142:392-404.
[163] TIAN S X, CHEN Z M, CHEN L L, et al. Numerical analyses on influence of damage configuration on vibration parameters for lattice sandwich plate[J]. International Journal of Applied Electromagnetics and Mechanics. 2010. 33: 1565–1572.
[164] LI B, LI Z, ZHOU J, et al. Damage localization in composite lattice truss core sandwich structures based on vibration characteristics[J]. Composite Structures. 2015. 126: 34-51.
[165] LU L L, SONG H W, YUAN W, et al. Baseline-free damage identification of metallic sandwich panels with truss core based on vibration characteristics[J]. Structural Health Monitoring.2017. 16(1): 24-38
[166] LE J, LU L L, WANG Y B, et al. Damage identifica-tion of low-density material–filled sandwich panels with truss core based on vibration properties[J]. Structural Health Monitoring. 2019. 18(5-6): 1711-1721.
[167] ZHOU J, LI Z. Damage detection based on vibration for composite sandwich panels with truss core[J]. Composite Structures. 2019. 229:111376.
[168] ZHOU Y, XU Y Z, LIU H, et al. Debonding identifi-cation of Nomex honeycomb sandwich structures based on the increased vibration amplitude of debonded skin[J]. Composites Part B. 2020. 200: 108233.
[169] YANG J S, LIU Z D, SCHMIDT R, et al. Vibration-based damage diagnosis of composite sandwich pan-els with bidirectional corrugated lattice cores[J]. Composites Part A. 2020.  131: 105781.
[170] 张梗林, 杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击. 2013. 32(22): 68-72.
ZHANG G L, YANG D Q. Optimal design of macro negative Poisson's ratio honeycomb sandwich vibra-tion isolator for ships [J]. Journal of vibration and shock. 2013. 32(22): 68-72(in Chinese).
[171] 姜姝羽, 谷松, 陈善搏. 微小卫星帆板展开火工冲击减振结构研究[J]. 机械强度. 2018. 40(1): 33-38.
JIANG S Y, GU S, CHEN S B. Research on py-roshock reduction structure when micro satellite de-ploys the solar array. Journal of mechanical strength. 2018. 40(1): 33-38. (in Chinese).
[172] ZHANG X Y, ZHOU H, SHI W H, et al. Vibration Tests of 3D Printed Satellite Structure Made of Lat-tice Sandwich Panels[J]. AIAA Journal. 2018. 56(10): 4213-4217.
[173] DOEHRING T, NELSON W, HARRIS T, et al. FE vibration analyses of novel conforming meta‑structures and standard lattices for simple bricks and a topology‑optimized aerodynamic bracket[J]. Sci-entific reports. 2020. 10: 21484.

PDF(4041 KB)

Accesses

Citation

Detail

段落导航
相关文章

/