铺层结构和成型工艺是影响超高分子量聚乙烯(Ultra-high molecular weight Polyethyene,UHMWPE)纤维复合材料弹道防护性能的重要因素,为了评估各因素对UHMWPE纤维复合材料防弹性能的影响程度,基于正交试验设计建立了铺层角度以及包括温度、压强、时间三个热压成型工艺条件下的四因素三水平正交表并进行了9组弹道极限试验。通过对试验结果进行极差和方差分析表明,各试验因素对弹道防护影响程度由大到小依次为铺层角度、成型时间、成型压强和成型温度;此外,研究发现[(0°/90°)2]2n和[(-45°/+45°)2]2n铺层复合材料弹道冲击吸能体现为多破坏模式协同耗能,而[(0°/90°)2/(-45°/+45°)2]n准各向铺层复合材料的弹道冲击吸能体现为单一破坏模式耗能;最后综合考虑防弹性能和成本确定的最优组合为成型温度120℃、压强25MPa、时间20min,铺层角度[(0°/90°)2]2n。
Abstract
The ply scheme and molding process are important factors affecting the ballistic protection performance of ultra-high molecular weight polyethylene (UHMWPE) fiber composites. In order to evaluate influences of the factors on the bulletproof performance of UHMWPE fiber composites, a four-factor and three-level orthogonal table of ply orientation angle and three hot pressing process conditions including temperature, pressure, time was established based on the orthogonal test design, and 9 groups of ballistic limit experiments were carried out. The range and variance analysis of the experiment results show that the effect sequences of experimental factors on ballistic protection from strength to weakness were as follows: ply orientation angle, molding time, molding pressure and molding temperature. In addition, it is found that the ballistic impact energy absorption of [(0°/90°)2]2n and [(-45°/+45°)2]2n laminated composites was reflected in the cooperative energy consumption of multiple failure modes, while the ballistic impact energy absorption of [(0°/90°)2/(-45°/+45°)2]n quasi isotropic laminated composites was reflected in the energy consumption of single failure mode. Finally, considering the bulletproof performance and cost, the optimal combination was determined as follows: forming temperature of 120 ℃, pressure of 25MPa, time of 20min and ply angle of [(0°/90°)2]2n.
关键词
UHMWPE纤维 /
防弹复合材料 /
正交试验 /
铺层角度 /
热压成型工艺 /
弹道极限速度
{{custom_keyword}} /
Key words
UHMWPE fiber /
Bulletproof composite, Orthogonal experimental, Ply orientation angle, Hot pressing process, Ballistic limit velocity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CAPRINO G, LOPRESTO V, SANTORO D. Ballistic impact behaviour of stitched graphite/epoxy laminates [J]. Composites Science & Technology, 2007, 67(3-4): 325-35.
[2] FANCEY K S. Viscoelastically prestressed polymeric matrix composites-Potential for useful life and impact protection[J]. Composites Part B Engineering, 2010, 41(6): 454-61.
[3] WERFF H, HEISSERER U. High-performance ballistic fibers: Ultra-high molecular weight polyethylene (UHMWPE)-ScienceDirect[J]. Advanced Fibrous Composite Materials for Ballistic Protection, 2016: 71-107.
[4] YANG Y F, LING T P, XUE S N, et al. Meso-scale Numerical Modeling of Uni-directional Composite Panel Under Ballistic Impact[J]. Applied Composite Materials, 2021: 1-14.
[5] YANG D, HU Y, GONG X Z, et al. Review of Body Armor Research[J]. AATCC Journal of Research, 2017, 4(6): 18-26.
[6] 李伟, 朱锡, 王晓强, 等. 玄武岩纤维增强复合材料抗弹性能试验研究[J]. 振动与冲击, 2009, 28(6): 52-55.
LI Wei, ZHU Xi, WANG Xiao-qiang, et al. Experimental Research on the Ballistic Performance of Basalt Fiber Reinforced Composites[J]. Journal of vibration and shock, 2009, 28(6):52-55.
[7] KARTHIKEYAN K, KAZEMAHVAZI S, RUSSELL B P. Optimal fibre architecture of soft-matrix ballistic laminates [J]. International Journal of Impact Engineering, 2016, 88(FEB.): 227-37.
[8] 秦建兵, 韩志军, 刘云雁,等. 复合材料层合板侵彻行为的研究[J]. 振动与冲击, 2013, 32(24):122-126.
QIN Jian-bing, HAN Zhi-jun, LIU Yun-yan, et al. Penetration behavior of composite laminated plates[J]. Journal of vibration and shock,2013,32(24):122-126.
[9] 焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34(9): 13.
JIAO Ya-nan, HE Ye-mao, ZHOU Qing, et al. Influence factors on ballistic performance and failure mechanism of fiber reinforced resin matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(9):13.
[10] 孙志杰, 张佐光, 沈建明, 等. UD75防弹板工艺参数与弹道性能的初步研究[J]. 复合材料学报, 2001, 18(2): 46-49.
SUN Zhi-jie, ZHANG Zuo-guang, SHEN Jian-ming, et al. Preliminary study on the process parameters and ballistic properties of UHMWPE fiber composite laminates[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 46-49.
[11] KARBALAIE M, YAZDANIRAD, M, MIRHABIBI, A. High performance Dyneema(R) fiber laminate for impact resistance/macro structural composites[J]. Journal of Thermoplastic Composite Materials, 2012: 403-14.
[12] CAO M, CHEN L, XU R, et al. Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness [J]. Composite Structures, 2021, 277.
[13] LAESSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites, 2018, 147B(AUG.): 47-55. Acta Materiae Compositae Sinica, 2001,18(2):46-9.
[14] ZHENG Z, HUANG X C, LI Y, et al. Influence factors of internal structure and interfacial compatibility of UHMWPE fiber/SEBS resin composites: Processing parameters, structure of fiber and nature of resin [J]. Composites Part B, 2012, 43(3): 1538-44.
[15] 宋俊. 超高分子量聚乙烯纤维表面改性及其复合材料研究 [D]. 天津:天津工业大学, 2007.
SONG Jun. Study on surface modification of UHMWPE fiber and its Composites[D]. Tianjin: Tiangong University.2007.
[16] GA950-2019. 防弹材料及产品V50试验方法[S].北京: 中国标准出版社, 2019.
GA950-2019. V50 test method for ballistic materials and products[S]. Beijing: China Standards Press, 2019.
[17] 陈磊, 徐志伟, 李嘉禄, 等. 防弹复合材料结构及其防弹机理[J]. 材料工程, 2010, (11): 94-100.
CHEN Lei, XU Zhi-wei, LI Jia-lu, et al. Structure and Bullet-proof Mechanism of Ballistic Composites [J]. Journal of Materials Engineering. 2010, (11): 94-100.
[18] ZHANG R, QIANG L S, HAN B, et al. Ballistic performance of uhmwpe laminated plates and uhmwpe encapsulated aluminum structures: numerical simulation [J]. Composite Structures, 2020: 112686.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}