为研究水中隔振器的振动传递机理,结合子结构导纳法、波传播法和四端参数法,建立了含弹性连接和夹层水的双层圆柱壳振动耦合理论模型。模型分为内、外壳两个子结构以及弹性连接构成的修正子结构,采用结构刚度和连接刚度构成的矩阵描述夹层流体的影响,推导内壳以内的水介质声压,对水中隔振器的振动传递特性开展了研究。结果表明:在存在夹层水介质的条件下,内壳以内的水介质流体负载效应同时作用于内外壳;内外壳夹层水对壳间的振动传递起到了“短路”作用,降低了隔振器的减振性能,且与夹层厚度无关;此外,与刚性支撑连接相比,水中隔振器仍具备一定的隔振效果。
Abstract
In order to study the vibration transmission mechanism of underwater vibration isolator, the vibration coupling theoretical model of double-layer cylindrical shell with elastic connection and interlayer water is established by combining substructure admittance method, wave propagation method and four end parameter method. The model is divided into two substructures: inner and outer shell and the modified substructure composed of elastic connection. The influence of sandwich fluid is described by the matrix composed of structural stiffness and connection stiffness, the sound pressure of water medium in the inner shell is deduced, and the vibration transmission characteristics of underwater vibration isolator are studied. The results show that under the condition of interlayer water medium, the fluid loading effect of water medium in the inner shell acts on the inner shell and outter shell at the same time; The interlayer water between the inner and outer shells plays a "short circuit" role in the vibration transmission between the shells, which reduces the vibration damping performance of the vibration isolator, while has nothing to do with the interlayer thickness; In addition, compared with the rigid support connection, the underwater vibration isolator still has a certain vibration isolation effect.
关键词
弹性连接 /
夹层流体 /
双层圆柱壳 /
振动传递
{{custom_keyword}} /
Key words
elastic connection /
interlayer water /
double cylindrical shell /
vibration transmission
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李佰洲.异步电机定子系统磁固耦合振动机理研究[D].天津大学,2014.
[2] 金著,何琳,赵应龙.橡胶减振器动态载荷谱提取与实验室载荷谱编制[J].舰船科学技术,2017,39 (11):6.
JIN Zhu,He Lin,Zhao Ying-long.Dynamic load spectrum extraction and experimental load spectrum compilation of rubber isolator[J].Ship Science and Technology,2017,39 (11):6.
[3] 严斌,刘文章,黄河,等.一种浸水永磁电机隔声装置: CN 202010668941.8 [P].中国,发明专利,CN 111697748 B,2021
A sound insulation device for immersed permanent magnet motor[P].China,Invention patent,CN 111697748 B,2021
[4] S.YOSHIKAWA.Vibration of two concentric submerged cylindrical shells coupled by the entrained fluid[J].Journal of the Acoustical Society of America, 1994.95(6): 3273-3286.
[5] 吴文伟,沈顺根.双层加肋圆柱壳振动和声辐射研究[J].船舶力学,2002.6(1).
WU Wen-wei,SHEN Shun-gen. Study of the Vibroacoustic Radiation from the Reinforced Double Cylindrical Shells [J].Journal of Ship Mechanics, 2002.6(1).
[6] 曾革委.无限长双层加肋圆柱壳水下声辐射解析计算[J].振动工程学报,2004.17(2).
ZENG Ge-wei. Acoustic Radiation from Fluid-Loaded Infinite Circular Cylindrical Double-Shell[J]. Journal of Vibration Engineering,2004.17(2).
[7] 陈美霞,陈小宁,沈瑞喜.复杂双层壳体声辐射性能分析[J].声学学报,2004.3.
CHEN Mei-xia,CHEN Xiao-ning,SHEN Rui-xi. Analytical Solution of Radiation Sound Pressure of Double Cylindrical Shells in Fluid Medium[J].Acta Acustica,2004.
[8] 姚熊亮,钱德进,明磊.壳间连接介质对双层壳声辐射性能的影响[J].声学技术,2009. 28(3).
YAO Xiong-liang,QIAN De-jin,MING Lei.The effect of linked materials on the sound radiation from double cylindrical shell[J].Technical Acoustics,2009. 28(3).
[9] 白振国.双层圆柱壳舷间声振耦合特性及控制技术[D].中国舰船研究院,2014.
[10] 王世彦,俞孟萨.舷间液舱模型声振耦合特性及声辐射控制[J].船舶力学, 2019,23(1):96-109.
WANG Shi-yan,YU Meng-sa. Sound and vibration coupling characteristic andacoustic radiation control of water cabin [J].Journal of Ship Mechanics,2019,23 (1):96-109.
[11] Cheng L,Li Y Y,Gao J X.Energy transmission in a mechanically-linked double-wall structure coupled to an acoustic enclosure[J].Journal Acoustic Society of America, 2005,117(5):2742 -2751.
[12] LEGAULT,N.ATALLA.Sound transmission through a double panel structure periodically coupled with vibration insulators[J].Journal of Sound and Vibration, 2010.329 (15):3082-3100.
[13] Firestone F. A. The receptance method of computing the vibration of linear mechanical and acoustical systems:mechanical-electrical analogies[J].Journal of Applied Physics,1938(9): 373-387.
[14] 吴仕超,蔡国平.刚架结构频域子结构法的试验研究[J].实验力学,2011,26(2):196-201.
WU Shi-chao,CAI Guo-ping. Experimental Study of a Trussed Structure by Using FRF Based Substructuring Technique[J]. Journal of Experimental Mechanics,2011,26 (2):196-201.
[15] Rubin S. Transmission matrices for vibration and their relation to receptance and impedance[J].Journal of Engineering for Industry,1964,86(1):9-21.
[16] Rubin S. Mechanical immittance- and transmission-matrix concepts[J].The Journal of the Acoustical Society of America,1967,41(5):1171-1179.
[17] O'Hara G. J.Mechanical impedance and receptance concepts[J].The Journal of the Acoustical Society of America,1967,41(5):1180-1184.
[18] Cuschieri. J. M. Structural power-flow analysis using a receptance approach of L-shaped plate[J].The Journal of the Acoustical Society of America, 1990,87 (3):1159-1165.
[19] Cuschieri. J. M. Cuschieri.Parametric analysis of the power flow on an L-shaped plate using a receptance power flow approach[J].The Journal of the Acoustical Society of America,1992,91(5):2686-2695.
[20] 周海军,贺才春,姜其斌,等.基于阻抗综合法的梁-圆柱壳耦合系统动态特性分析[J].振动与冲击,2018,37(1):6.
ZHOU Hai-jun,HE Cai-chun,JIANG Qi-bin,et al. Dynamic analysis of a coupled beam-cylindrical shell system based on the Receptance Synthesis Approach [J].Journal of Vibration and Shock,2018,37(1):6.
[21] 黄修长.舱筏隔振系统声学设计及优化,控制[D].上海交通大学,2011.
[22] 徐时吟.舱筏隔振系统的精细化建模及高效筏架设计研究[D].上海交通大学,2016.
[23] YU Anbin,ZHANG Yinglong,CHEN Meixia,et al.Study on free and forced vibration characteristics of double-sided submerged cylindrical shells[J]. Journal of Naval University of Engineering,2022.
[24] Yu A,Zhao Y,Wang Y,et al.Study on the Coupling Frequency of Double-Sided Submerged Ring-Stiffened Cylindrical Shells[J].Shock and Vibration, 2020,2020(1):1-10.
[25] Flügge W.Stress in shells.Berlin,Germany:Springer, 1973.
[26] Yan B.Active vibration isolation with a distributed parameter isolator[D].University of Southampton, 2007.
[27] 周相荣,王强.橡胶减振元件中高频机械阻抗的数值模拟[J].噪声与振动控制,2006,26(3):3.
ZHOU Xiang-rong,WANG Qiang. Numerical Simulation of the Middle-High Frequency Impedance Characteristics of Rubber Absorbers[J].Noise and Vibration Control,2006, 26(3):3.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}