本文针对带有饱和特性推进器,速度不可测量以及受外界未知扰动影响的动力定位(dynamic positioning,DP)船舶,设计了一种带有饱和处理模块的递归滑模动态面控制律。基于高斯误差函数设计了输入输出特性光滑的饱和处理模块对控制律的输出进行限幅处理,构造了高增益观测器利用船舶位置和艏向角信息估计船舶速度,设计了递归滑模动态面控制(dynamic surface control,DSC)策略增强控制律对系统参数摄动的非脆弱性,并通过选择合适的Lyapunov函数,证明了DP闭环控制系统的稳定性和所有信号的最终一致有界性。最终,对一艘供给船进行DP仿真分析,结果表明,所设计的控制律对外界扰动具有较强的抵抗能力和对系统参数摄动具有较强的非脆弱性,能够保证DP控制系统具有良好的动态特性和稳态性能。
Abstract
In this paper, a recursive sliding-mode dynamic surface control (DSC) law with a saturation handling module is designed for dynamic positioning (DP) of ships with the saturation characteristics of propellers, unmeasurable velocities and unknown external disturbances. A saturation handling module with smooth input and output characteristics is designed based on Gaussian error function to limit the output of the control law. A high-gain observer is constructed to estimate the unmeasurable velocities according to the position and heading angle information of the ship. And a recursive sliding mode DSC strategy is designed to enhance the non-fragility of the control law to the perturbation of system parameters. By properly choosing the Lyapunov function, the stability of the DP closed-loop control system and the ultimately uniformly boundedness of all signals are proved. Finally, the DP simulation analyses of a supply ship is carried out. The results show that the designed control law has a strong rejection ability to the external disturbances and a strong non-fragility to the perturbation of system parameters, which can ensure that the DP control system has a good dynamic quality and steady-state performance.
关键词
动力定位 /
饱和处理模块 /
输入饱和 /
递归滑模控制 /
非脆弱性
{{custom_keyword}} /
Key words
dynamic positioning /
saturation handling module /
input saturation /
recursive sliding-mode control /
non-fragility
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Chichester, UK: John Wiley & Sons, Ltd., 2011.
[2] YANG Y, DU J L, LIU H B. A trajectory tracking robust controller of surface vessels with disturbance uncertainties[J]. IEEE Transactions on Control Systems Technology, 2014, 22(4): 1511-1518.
[3] BRODTKORD A H, NIELSEN U D, SRENSEN A J. Sea state estimation using vessel response in dynamic positioning[J]. Applied Ocean Research, 2018, 70: 76-86.
[4] 胡鑫.船舶动力定位非线性控制研究[D].大连:大连海事大学,2018.
HU Xin. Research on nonlinear control of ship dynamic positioning[D]. Dalian: Dalian Maritime University, 2018.
[5] VAERNO S A, BRODTKORB A H, SKJETNE R, et al. Time-varying model-based observer for marine surface vessels in dynamic positioning[J]. IEEE Access, 2017, 5: 14787-14796.
[6] ZHANG J Q, YU S H, YAN Y. Fixed-time velocity-free sliding mode tracking control for marine surface vessels with uncertainties and unknown actuator faults[J]. Ocean Engineering, 2020, DOI: 10.1016/j.oceaneng.2020.107107.
[7] DO K D. Global robust and adaptive output feedback dynamic positioning of surface ships[J]. Journal of Marine Science and Application, 2011, 10(3): 325-332.
[8] WANG N, HE H K. Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9648-9658.
[9] WANG Y H, WANG H B, LI M Y, et al. Adaptive fuzzy controller design for dynamic positioning ship integrating prescribed performance[J]. Ocean Engineering, 2020, DOI: 10.1016/j.oceaneng.2020.107956.
[10] PEREZ, TRISTAN. Anti-wind-up designs for dynamic positioning of marine vehicles with control allocation[J]. IFAC Proceedings Volumes, 2009, 42(18): 243-248.
[11] VEKSLER A, JOHANSEN T A, Borrelli F, et al. Dynamic positioning with model predictive control[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1-14.
[12] SARHADI P, NOEI A R, KHOSRAVI A. Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle[J]. Robotics & Autonomous Systems, 2016: 87-93.
[13] HU X, DU J L, ZHU G B, et al. Robust adaptive NN control of dynamically positioned vessels under input constraints[J]. Neurocomputing, 2018, 318(27): 201-212.
[14] Gong C L, Su Y X, Zhang D H. Variable gain prescribed performance control for dynamic positioning of ships with positioning error constraints[J]. Journal of Marine Science and Engineering, 2021, DOI:10.3390/jmse10010074,
[15] 江伟,吴荣华,袁芳.改进指数趋近律滑模控制的H桥逆变器的非线性动力学行为研究[J].振动与冲击,2021,40(389):292-297.
JIANG Wei, WU Rong-Hua, YUAN Fang. Nonlinear dynamic behavior of H-bridge inverter with sliding mode control based on improved exponential approach law [J]. Journal of Vibration and Shock, 2021, 40(389): 292-297.
[16] LIU X, SUN X X, LIU S G, et al. Nonlinear gains recursive sliding mode dynamic surface control with integral action[J]. Asian Journal of Control, 2015, 17(5): 1955-1961.
[17] 沈智鹏,张晓玲.基于非线性增益递归滑模的船舶轨迹跟踪动态面自适应控制[J].自动化学报,2018,44(10):1833-1841.
SHEN Zhi-Peng, ZHANG Xiao-Ling. Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear [J]. Acta Automatica Sinica, 2018, 44 (10): 1833-1841.
[18] PRASOV A A , KHALIL H K. A Nonlinear high-gain observer for systems with measurement noise in a feedback control framework[J]. IEEE Transactions on Automatic Control, 2013, 58(3): 569-580.
[19] DU J L, HU X, MIROSLAV K, et al. Robust dynamic positioning of ships with disturbances under input saturation[J]. Automatica, 2016, 73: 207-214.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}