适用于我国抗震设计规范的位移设计谱方法

赵国臣1,徐龙军1,朱兴吉2,谢礼立1, 3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 266-274.

PDF(3318 KB)
PDF(3318 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 266-274.
论文

适用于我国抗震设计规范的位移设计谱方法

  • 赵国臣1,徐龙军1,朱兴吉2 ,谢礼立1, 3
作者信息 +

A displacement design spectral method adapted to the Chinese seismic design code

  • ZHAO Guochen1, XU Longjun1, ZHU Xingji2, XIE Lili1, 3
Author information +
文章历史 +

摘要

由于位移参数更能科学、直观地描述建筑结构的抗震水平,基于位移的抗震设计方法已成为地震工程领域研究的热点。位移设计谱是基于位移的抗震设计方法中确定地震作用的重要参考依据。然而我国现行抗震设计规范(后简称规范)中尚未有关位移设计谱的相关规定。为便于实际应用,本文基于实际地震动位移反应谱的特征提出了一种能够适用于规范的位移设计谱方法。该方法未对规范参数做任何调整,仅增加了控制点周期TD和峰值地面位移PGD两个参数,且所增参数与规范相关参数具有一一对应的关系。鉴于基于力的抗震设计在工程实践中仍占据主导地位,本文给出的位移设计谱可与加速度设计谱互相转化。为避免与规范矛盾,当周期小于5Tg(场地特征周期)时,本文加速度设计谱与规范加速度设计谱一致。在长周期段,本文位移设计谱能够反映地震动平均位移反应谱的主要特征,且本文加速度设计谱与平均加速度反应谱吻合。本文的研究工作能服务于基于位移的抗震设计方法的工程应用,能为规范中设计谱相关内容的修订提供指导意见。

Abstract

Since displacement parameters can describe the seismic performance of structures more scientifically and intuitively, the displacement-based seismic design method has become a research hotspot in the field of Earthquake Engineering. Displacement design spectrum is an essential approach for determining the seismic load in displacement-based seismic design methods. However, the current version of the Chinese seismic design code (after this referred to as the code) does not have relevant provisions on the displacement design spectrum. This paper proposes a displacement design spectrum method adapted to the code based on the characteristics of the actual displacement response spectrum of ground motions to facilitate the practical application. This method does not modify the code parameters but only adds two parameters: control period TD and peak ground displacement PGD, and the added parameters have a one-to-one correspondence with the relevant code parameters. In view of the fact that the force-based seismic design method still plays a dominant role in engineering practice, the proposed displacement design spectrum can be transformed into the acceleration design spectrum. To avoid the contradiction with the code, the proposed acceleration design spectrum is consistent with the code design spectrum when the period is less than 5Tg (site characteristic period). In the long periods, the proposed displacement design spectrum can reflect the main characteristics of the average displacement response spectrum of ground motions, and the proposed acceleration design spectrum is consistent with the average acceleration response spectrum. The research work can serve for the engineering application of the displacement-based seismic design method and guide revising the content about the design spectrum in the code.

关键词

位移设计谱 / 加速度设计谱 / 设计规范 / 基于位移的抗震设计 / 地震动选取

Key words

displacement design spectra / acceleration design spectra / design code / displacement-based seismic design / ground motion selection

引用本文

导出引用
赵国臣1,徐龙军1,朱兴吉2,谢礼立1, 3. 适用于我国抗震设计规范的位移设计谱方法[J]. 振动与冲击, 2023, 42(8): 266-274
ZHAO Guochen1, XU Longjun1, ZHU Xingji2, XIE Lili1, 3. A displacement design spectral method adapted to the Chinese seismic design code[J]. Journal of Vibration and Shock, 2023, 42(8): 266-274

参考文献

[1] 谢礼立,曲哲. 论土木工程灾害及其防御[J]. 地震工程与工程振动,2016, 36(1): 1-10.
XIE Lili, QU Zhe. On the civil engineering disaster and its mitigation[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1): 1-10.
[2] 杨博雅,吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学,2018, 35(2): 59-75.
YANG Bo-ya, LV Xi-lin. Direct displacement-based aseismic design and application for prestressed precast concrete shear-wall structures[J]. Engineering Mechanics, 2018, 35(2): 59-75.
[3] Priestley M J N, Calvi G M, Kowalsky M J. Displacement-based seismic design of structures[C]// Proceedings of the 5th New Zealand Society for Earthquake Engineering Conference. Palmerston North, New Zealand, 2007, 1-23.
[4] Loss C, Tannert T, Tesfamariam S. State-of-the-art review of displacement-based seismic design of timber buildings[J]. Construction and Building Materials, 2018, 191: 481-497.
[5] 楚留声,刘静,王伸伟,赵军. SRC 柱-钢梁混合框架直接基于位移的抗震设计方法研究[J]. 工程力学,2018, 35(8): 100-110.
CHU Liu-sheng, LIU Jing, Wang Shen-wei, ZHAO Jun. Direct displacement-based seismic design method of src column-steel beam hybrid frames[J]. Engineering Mechanics, 2018, 35(8): 100-110.
[6] 钱稼茹,罗文斌. 建筑结构基于位移的抗震设计[J]. 建筑结构,2001, 31(4): 3-6.
QIAN Jiaru, LUO Wenbin. Displacement based seismic design methodology for building structures[J]. Building Structure, 2001, 31(4): 3-6.
[7] 杨松涛,叶列平,钱稼茹. 地震位移反应谱特性的研究[J]. 建筑结构,2002, 32(5): 47-50.
YANG Songtao, YE Lieping, QIAN Jiaru. Study on the characteristics of displacement spectra[J]. Building Structure, 2002, 32(5): 47-50.
[8] Tolis S V, Faccioli E. Displacement design spectra[J]. Journal of Earthquake Engineering, 1999, 3(1): 107-125.
[9] Faccioli E, Paolucci R, Rey J. Displacement spectra for long periods[J]. Earthquake Spectra, 2004, 20(2): 347-376.
[10] 曹加良,施卫星,刘文光,蒋湘闽. 长周期结构相对位移反应谱研究[J]. 振动与冲击,2011, 30(7): 63-70.
CAO Jialiang, SHI Weixing, LIU Wenguang, JIANG Xiangmin. Relative displacement response spectrum of a long-period structure[J]. Journal of Vibration and Shock, 2011, 30(7): 63-70.
[11] 李恒,李龙安,冯谦. 用位移反应谱研究长周期设计地震反应谱[J]. 地震工程与工程振动,2012, 32(4): 47-53.
LI Heng, LI Longan, FENG Qian. Seismic design spectra in long-period from spectral displacement analyses[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(4): 47-53.
[12] 汪梦甫,汤海燕,刘振阳. 基于现行规范场地划分标准的位移反应谱衰减关系[J]. 地震工程与工程振动,2014, 34(5): 56-65.
WANG Mengfu, TANG Haiyan, LIU Zhenyang. The attenuation relations of displacement response spectra based on classified site criterion in current seismic design code[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(5): 56-65.
[13] 王亚楠,李慧,杜永峰,徐天妮. 近场脉冲型地震动作用下设计位移反应谱[J]. 中南大学学报,2015, 46(4): 1511-1517.
WANG Yanan, LI Hui, DU Yongfeng, XU Tianni. Displacement design spectra for near-fault pulse-type ground motions[J]. Journal of Central South University (Science and Technology), 2015, 46(4): 1511-1517.
[14] 李宇,王森,车艳阳,武芳文. 梁式桥抗震设计的弹塑性位移反应谱[J]. 振动与冲击,2015, 34(10): 1-5.
LI Yu, WANG Sen, CHE Yan-yang, WU Fang-wen. Elasto-plastic response spectra for beam bridge's aseismic design [J]. Journal of Vibration and Shock, 2015, 34(10): 1-5.
[15] 吴晓阳,陈龙伟,袁晓铭. 基于强震记录的长周期位移反应谱特征分析[J]. 建筑结构学报,2021, 42(5): 195-205.
WU Xiaoyang, CHEN Longwei, YUAN Xiaoming. Characteristics of long-period displacement spectra based on ground-motion records recorded in recent large earthquakes[J]. Journal of Building Structures, 2021, 42(5): 195-205.
[16] 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010.
[17] Bommer JJ, Elnashai AS. Displacement spectra for seismic design[J]. Journal of earthquake engineering, 1999, 3(01): 1-32.
[18] EN 1998-1: 2004 Eurocode 8: Design of structures for earthquake resistance — Part 1: General rules, seismic actions and rules for buildings[S]. London, UK: BSI, 2004: 36-42.
[19] 张凡,李帅,颜晓伟,王景全. 近断层脉冲型地震动作用下大跨斜拉桥地震响应分析. 振动与冲击,2017, 36(21): 163-184
ZHANG Fan, LI Shuai, YAN Xiaowei, WANG Jingquan. Effects of near-fault pulse-type ground motions on the seismic responses of a long-span cable-stayed bridge[J]. Journal of Vibration and Shock, 2017, 36(21): 163-184
[20] Shahi S K, Baker J W. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bulletin of the Seismological Society of America, 2014, 104(5): 2456-2466.
[21] Zhai C, Chang Z, Li S, Xie L. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2591-2603.
[22] Zhao G, Xu L, Xie L. A simple and quantitative algorithm for identifying pulse‐like ground motions based on zero velocity point method[J]. Bulletin of the Seismological Society of America, 2016, 106(3): 1011-23.
[23] 蒲武川,薛耀辉,张孟成. 高通滤波对近场脉冲型地震动位移反应谱的影响[J]. 振动与冲击,2020, 39(13): 116-124.
PU Wuchuan, XUE Yaohui, ZHANG Mengcheng. Effects of high-pass filtering on displacement response spectrum of near-field impulsive ground motion [J]. Journal of Vibration and Shock, 2020, 39(13): 116-124.
[24] Darragh B, Silva W, Gregor N. Strong motion record processing for the PEER center[C]// Proceedings of COSMOS Invited Workshop on Strong-Motion Record Processing. Richmond, Calif, USA, 2004: 26-27.
[25] Boore D M, Stephens C D, Joyner W B. Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, earthquake[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1543-1560.
[26] Boore D M, Azari Sisi A, Akkar S. Using pad‐stripped acausally filtered strong‐motion data[J]. Bulletin of the Seismological Society of America, 2012, 102(2): 751-760.
[27] Boore D M, Akkar S. Effect of causal and acausal filters on elastic and inelastic response spectra[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(11): 1729-1748.
[28] Xu L, Zhao G, Gardoni P, Xie L. Quantitatively determining the high‐pass filter cutoff period of ground motions[J]. Bulletin of the Seismological Society of America, 2018, 108(2): 857-865.
[29] 冀昆,温瑞智,任叶飞. 适用于我国抗震设计规范的天然强震记录选取[J]. 建筑结构学报,2017, 38(12): 57-67.
JI Kun, WEN Ruizhi, REN Yefei. Ground motion recordings selection for seismic design code[J]. Journal of Building Structures, 2017, 38(12): 57-67.
[30] Baker J W. Conditional Mean Spectrum: Tool for Ground-Motion Selection[J]. Journal of Structural Engineering, 2011, 137(3): 322-331.
[31] Jayaram N, Lin T, Baker J W. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance[J]. Earthquake Spectra, 2011, 27(3): 797-815.
[32] Bommer J J, Elnashai A S, Weir A G. Compatible acceleration and displacement spectra for seismic design codes[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000: 1-8.
[33] 赵国臣. 地震动位移反应谱分析及抗震设计谱研究[D]. 哈尔滨:哈尔滨工业大学, 2018: 81-118.
ZHAO Guochen. Study on displacement response spectra of ground motions and development of seismic design spectra[D]. Harbin: Harbin Institute of Technology, 2018: 81-118.

PDF(3318 KB)

Accesses

Citation

Detail

段落导航
相关文章

/