基于自适应信号分解特征集成学习的电磁脉冲识别方法

程璐1,2,3,王雪晴1,2,3,刘艳3,程先友4,许鑫1,2,3,纪奕才1,2,3,方广有1,2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 275-281.

PDF(2089 KB)
PDF(2089 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 275-281.
论文

基于自适应信号分解特征集成学习的电磁脉冲识别方法

  • 程璐1,2,3,王雪晴1,2,3,刘艳3,程先友4,许鑫1,2,3,纪奕才1,2,3,方广有1,2,3
作者信息 +

A recognition method of electromagnetic pulse based on ensemble learning of adaptive signal decomposition features

  • CHENG Lu1,2,3, WANG Xueqing1,2,3, LIU Yan3, CHENG Xianyou4, XU Xin1,2,3, JI Yicai1,2,3, FANG Guangyou1,2,3
Author information +
文章历史 +

摘要

为准确高效地识别核爆电磁脉冲(NEMP)和闪电电磁脉冲(LEMP),提出一种基于自适应信号分解和集成学习的识别分类方法。首先,针对样本不均衡问题,利用数据扩增方法对数据集进行预处理;然后,采用希尔伯特-黄变换对 NEMP 和LEMP 分别进行自适应信号分解;其次,对分解信号提取其在时域、频域和小波域的特征;最后,对提取特征采用集成学习算法进行识别分类。实验结果表明,该方法在实测数据上的准确率能够达到99.99%以上,LEMP 信号的误报率低于万分之一。

Abstract

In order to accurately and efficiently identify nuclear electromagnetic pulse (NEMP) and lightning electromagnetic pulse (LEMP), a recognition and classification method based on adaptive signal decomposition and ensemble learning was proposed. First, for the problem of sample imbalance, data enhancement methods were used to preprocess the data set. In addition, Hilbert-Huang transform was applied to perform adaptive signal decomposition on NEMP and LEMP respectively. Then, features of the decomposed signal in the time domain, frequency domain and wavelet domain were extracted. Finally, the ensemble learning algorithm was used to identify and classify the extracted features. Experimental results show that the accuracy of the method on the measured data can reach more than 99.99%, and the false alarm rate of LEMP signals is less than one in ten thousand.

关键词

核爆电磁脉冲 / 闪电电磁脉冲 / 希尔伯特-黄变换 / 集成学习

Key words

NEMP / LEMP / Hilbert-Huang transform / ensemble learning

引用本文

导出引用
程璐1,2,3,王雪晴1,2,3,刘艳3,程先友4,许鑫1,2,3,纪奕才1,2,3,方广有1,2,3. 基于自适应信号分解特征集成学习的电磁脉冲识别方法[J]. 振动与冲击, 2023, 42(8): 275-281
CHENG Lu1,2,3, WANG Xueqing1,2,3, LIU Yan3, CHENG Xianyou4, XU Xin1,2,3, JI Yicai1,2,3, FANG Guangyou1,2,3. A recognition method of electromagnetic pulse based on ensemble learning of adaptive signal decomposition features[J]. Journal of Vibration and Shock, 2023, 42(8): 275-281

参考文献

[1] 祁树锋,李夕海,韩绍卿,等. 基于多重分形分析的核爆与雷电电磁脉冲识别[J]. 振动与冲击,2013,32(07):8-10.
QI Shu-feng,LI Xi-hai, HAN Shaoqing, et al. Discrimination of nuclear explosion and lightning electromagnetic pulses using multi-fractal analysis[J]. Journal of Vibration and Shock, 2013,32(07):8-10.
[2] 祁树锋,李夕海,韩绍卿,等.核爆与雷电电磁脉冲识别[J].强激光与粒子束,2012,24(12):2935-2940.
QI Shu-feng, LI Xi-ha, HAN Shao-qing, et al. Discrimination of nuclear-explosion and lightning electromagnetic pulse [J]. High Power Laser and Particle Beams, 2012,24(12):2935-2940.
[3] 张旭荣, 张妙兰,刘新中. 小波变换在核爆电磁脉冲信号识别中的应用[J]. 电子与信息学报, 1999, 21(5):710-712.
ZHANG Xu-rong, ZHANG Miao-lan, LIU Xin-zhong. Studies of recognition methods of nuclear and lightning pulse signals with applications of wavelet transform[J]. Journal of Electronics, 1999,21(5):710-712.
[4] 张仲山,张恩山,高春霞. 小波分析在核爆与闪电识别中的应用[J]. 电波科学学报, 2000, 15(4):387-391.
ZHANG Zhong-shan, ZHANG En-shan, GAO Chun-xia. The application of wavelet analysis to Recognition of nuclear explosion and lightning[J]. Radio Science, 2000,15(4):387-391.
[5] Peng L ,  Yi Z ,  Chao H , et al. Lightning and nuclear explosion pattern recognition from optical and electromagnetic data[C]// 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2014.
[6] 李鹏,宋立军,韩超,等. 基于AR模型与神经网络的核爆与闪电脉冲信号识别[J].强激光与粒子束,2010,22(12):3052-3056.
LI Peng, SONG Li-jun, HAN Chao, et al. Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network[J]. High Power Laser and Particle Beams, 2010,22(12):3052-3056.
[7] G. Yaqin, Support Vectors Classification Method Based on Matrix Exponent Boundary Fisher Projection, 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 957-961, doi: 10.1109/ICMA.2019.88162
41.
[8] 刘志刚,刘代志,孙新利. 核爆电磁脉冲信号的时变谱特征分析[J].核电子学与探测技术,2002(06):492-495+511.
LIU Zhi-gang, LIU Dai-zhi, SUN Xin-li. On the applications of time-frequency analysis in NEMP signal processing[J]. Nuclear Electronics and Detection Technology, 2002(06):492
-495+511.
[9] 李夕海,刘志刚,武红霞,等. 核爆电磁脉冲信号的分形特征分析[J].核电子学与探测技术, 2004(02):143-146.
LI Xi-hai, LIU Zhi-gang, WU Hong-xia, et al. On the application of fractal analysis and wavelet in NEMP signal processing[J]. Nuclear Electronics and Detection Technology, 2004,24(2):143-146.
[10] 祁树锋,李夕海,韩绍卿,等. 基于Hilbert谱区域能量比的核爆与雷电电磁脉冲识别[J].振动与冲击,2013,32(03):163-166.
QI Shu-feng, LI Xi-hai, HAN Shao-qing, et al. Discrimination of nuclear explosion and lightning electromagnetic pulse using regional energy ratio of Hilbert spectrum[J]. Journal of Vibration and Shock, 2013,32(03):163-166.
[11] 王涛,陈福贵,刘明,等. 基于时域特征分布的核爆电磁脉冲识别算法[J].振动与冲击,2020,39(08):159-164.
WANG Tao, CHEN Fu-gui, LIU Ming, et al. A discrimination algorithm of nuclear electromagnetic pulse based on characteristic parameters in time domain[J]. Journal of Vibration and Shock, 2020,39(08):159-164.
[12] 王浩骅,苗家友,朱万华,等. 神经网络识别算法去除核爆电磁脉冲探测闪电干扰[J].核电子学与探测技术,2021,41(01):92-97.
WANG Hao-hua, MIAO Jia-you, ZHU Wan-hua, et al. Neural Network Identification Algorithm to Remove Lightning Interference from Nuclear Explosion EMP Detection[J]. Nuclear Electronics and Detection Technology, 2021,41(01):
92-97.
[13] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A—Mathematical, Physical and Engineering Sciences, 1998, 1971, 454: 903-995.
[14] Jl A , Qz A , Qw A , et al. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors[J]. Information Sciences, 2021, 565:438-455.
[15] Jia J, Qiu W. Research on an Ensemble Classification Algorithm Based on Differential Privacy[J]. IEEE Access, 2020, PP(99):1-1.
[16] S. T. N. Ozaki and K. Horio, SVM ensemble approaches for improving texture classification performance based on complex network model with spatial information, 2018 International Workshop on Advanced Image Technology (IWAIT), 2018, pp. 1-3, doi: 10.1109/IWAIT.2018.8369742.
[17] Berrar D . Bayes' Theorem and Naive Bayes Classifier[M]// Encyclopedia of Bioinformatics and Computational Biology. 2018.
[18] Zhou H F, Zhang J W, Zhou Y Q , et al. A feature selection algorithm of decision tree based on feature weight[J]. Expert Systems with Applications, 2021, 164(4):113842.
[19] Dhananjay B , Jayaraman S . Analysis and classification of heart rate using CatBoost feature ranking model[J]. Biomedical Signal Processing and Control, 2021, 68(16):102610.
[20] Shi X , Wong Y D , Li Z F , et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention, 2019, 129(AUG.):170-179.

PDF(2089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/