基于机器学习的单钢板混凝土组合板冲击响应预测及优化

赵唯以,陈沛涵

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 28-37.

PDF(2231 KB)
PDF(2231 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 28-37.
论文

基于机器学习的单钢板混凝土组合板冲击响应预测及优化

  • 赵唯以,陈沛涵
作者信息 +

Impact response prediction and optimization of half steel-concrete composite slabs based on machine learning

  • ZHAO Weiyi,CHEN Peihan
Author information +
文章历史 +

摘要

单钢板混凝土组合板(HSC板)的抗冲击性能十分出色,可有效抵挡落石冲击,在符合相关规范要求的前提下,可以通过设计降低HSC板在落石冲击作用下的变形,以最大限度地保证山区基础设施和人民的安全。为快速、准确地处理HSC板的变形和设计参数之间的复杂非线性关系,基于3种机器学习算法分别建立冲击作用下HSC板最大变形的预测模型,并通过有限元结果对模型进行验证。在此基础上,以落石冲击下HSC板的最大变形、自重和造价为优化目标,采用遗传算法对某山区建筑中某HSC屋面板进行优化设计,求解HSC屋面板的厚度、连接件尺寸等设计参数的最优解集。研究结果表明,高斯过程回归(GPR)模型对HSC屋面板变形的预测精度最高,可以代替复杂耗时的有限元计算,有效提高目标方程的计算效率,且最终的优化结果给出了多种优化方案,可以有效降低HSC屋面板变形,为工程设计提供了参考。

Abstract

The impact resistance of half steel-concrete composite slabs (HSC slabs) is very excellent, which can effectively resist rockfall impact. Under the premise of meeting the requirements of relevant codes, HSC slabs can be designed to reduce the deformation of HSC slabs under rockfall impact, so as to maximize the safety of infrastructure and people in mountain areas. To quickly and accurately deal with the complex nonlinear relationship between HSC slabs deformation and design parameters, the prediction models of HSC slabs maximum deformation under impact are established based on three machine learning algorithms, and the model is verified by finite element results. On this basis, taking the maximum deformation, self-weight and cost of HSC slabs under rockfall impact as the optimization goal, the genetic algorithm is used to optimize the design of a HSC roof slab in a mountain building, and the optimal solution set of design parameters such as thickness and connector size of HSC roof slabs is solved. The research results show that the gaussian process regression (GPR) model has the highest prediction accuracy for the deformation of HSC roof panels, which can replace the complex and time-consuming finite element calculation, and effectively improve the calculation efficiency of the objective equation, and the final optimization results give a variety of optimization schemes, which can effectively reduce the deformation of HSC roof slabs, and provide a reference for engineering design.

关键词

单钢板混凝土组合板 / 落石灾害 / 冲击响应 / 有限元分析 / 机器学习

Key words

half steel-concrete composite slabs / rockfall disasters / impact response / finite element analysis / machine learning

引用本文

导出引用
赵唯以,陈沛涵. 基于机器学习的单钢板混凝土组合板冲击响应预测及优化[J]. 振动与冲击, 2023, 42(8): 28-37
ZHAO Weiyi,CHEN Peihan. Impact response prediction and optimization of half steel-concrete composite slabs based on machine learning[J]. Journal of Vibration and Shock, 2023, 42(8): 28-37

参考文献

[1] 郭科萱. 落石冲击效应计算方法研究 [J]. 科技创新导报, 2017, 14(31): 64-67.
GUO Ke-xuan. Study on calculation method of rockfall impact effect [J]. Science and Technology Innovation Herald, 2017, 14(31): 64-67.
[2] 向欣. 边坡落石运动特性及碰撞冲击作用研究 [D]. 中国地质大学, 2010.
[3] THOENI K, GIACOMINI A, LAMBERT C,et al. A 3D discrete element modelling approach for rockfall analysis with drapery systems [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 107-119.
[4] BOURRIER F, LAMBERT S, BAROTH J,et al. A Reliability-Based Approach for the Design of Rockfall Protection Fences [J]. Rock Mechanics & Rock Engineering, 2015, 48(1).
[5] 赵唯以, 王琳, 郭全全,等. 双钢板混凝土组合结构抗冲击性能的研究进展 [J]. 钢结构, 2020, 035(003): P.26-36.
ZHAO Wei-yi, WANG Lin, GUO Quan-quan,et al. Research advances of impact Resistance of steel-concrete composite structures [J]. Steel Construction, 2020, 035(003): P.26-36.
[6] 刘青峰. 新型双钢板-混凝土组合剪力墙抗冲击性能及抗爆性能研究 [D]. 天津大学, 2019.
[7] Specification for Safety-Related Steel Structures for Nuclear Facilities [S]. US-AISC, 2012:
[8] GRISARO H, DANCYGIER A N. Assessment of the perforation limit of a composite RC barrier with a rear steel liner to impact of a non-deforming projectile [J]. International Journal of Impact Engineering, 2014, 64(2): 122-136.
[9] BRUHL J C, VARMA A H, JOHNSON W H. Design of composite SC walls to prevent perforation from missile impact [J]. International Journal of Impact Engineering, 2015, 75(1): 75-87.
[10] ZHAO W, GUO Q, DOU X,et al. Impact response of steel-concrete composite panels: Experiments and FE analyses [J]. Steel and Composite Structures, 2018, 26(3): 255-263.
[11] REMENNIKOV A M, KONG S Y. Numerical simulation and validation of impact response of axially-restrained steel–concrete–steel sandwich panels [J]. Composite Structures, 2012, 94(12): 3546-3555.
[12] SADIQ M, XIUYUN Z, RONG P. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results [J]. Nuclear Engineering and Design, 2014, 273: 653-667.
[13] BRUHL J C, VARMA A H, KIM J M. Static resistance function for steel-plate composite (SC) walls subject to impactive loading [J]. Nuclear Engineering and Design, 2015, 295: 843-859.
[14] GUO Q, ZHAO W. Displacement response analysis of steel-concrete composite panels subjected to impact loadings [J]. International Journal of Impact Engineering, 2019, 131: 272-281.
[15] WANG L, ZHAO W, YANG G,et al. TDOF model for evaluating the global and local impact response of steel-plate composite panels [J]. Thin-Walled Structures, 2021, 164: 107879.
[16] 叶四桥. 隧道洞口段落石灾害研究与防治 [D]. 西南交通大学, 2008.
[17] 窦旭强, 赵唯以, 可飞,等. 双钢板-混凝土组合剪力墙落锤冲击性能研究 [J]. 建筑结构学报, 2017, 38(S1): 84-89.
DOU Xu-qiang, ZHAO Wei-yi, KE Fei,et al. Drop hammer impact behavior of double steel-concrete composite shear walls [J]. Journal of Building Structures, 2017, 38(S1): 84-89.
[18] 窦旭强. 落锤冲击作用下双钢板混凝土组合墙的动力响应研究 [D]. 北京航空航天大学, 2018.
[19] JONES N. Structural Impact [M]. Cambridge: Cambridge University Press, 1989.
[20] LS-DYNA.LS-DYNA keyword user's manual[M]. Version 971.USA: Livermore Software Corporation,2010.
[21] 陈泰江, 章广成, 向欣. 落石冲击混凝土棚洞力学特性研究 [J]. 岩土力学, 2022, 43(01): 277-85+98.
CHEN Tai-jiang,ZHANG Guang-cheng,XIANG Xin. Investigations on mechanical characteristics of rockfall impact on concrete shed cave [J]. Rock and Soil Mechanics, 2022, 43(01): 277-85+98.
[22] 李明星, 王显会, 周云波,等. 基于神经网络的车辆抗冲击防护组件优化 [J]. 爆炸与冲击, 2020, 40(02): 110-118.
LI Ming-xing,WANG Xian-hui,ZHOU Yun-bo,et al. Research on optimization of vehicle anti-shock protection components based on neural network [J]. Explosion and Shock Waves, 2020, 40(02): 110-118.
[23] HUI Z, HASTIE T. Regularization and variable selection via the elastic net [J]. Journal of the Royal Statistical Society, 2005, 67(5): 768.
[24] TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society Series B: Methodological, 1996, 73(1).
[25] TUTZ G, BINDER H. Boosting ridge regression [J]. Computational Statistics and Data Analysis, 2007, 51(12): 6044-6059.
[26] AHMAD M S, ADNAN S M, ZAIDI S,et al. A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens [J]. Construction and Building Materials, 2020, 248: 118475.
[27] GUO K, YANG G. Load-slip curves of shear connection in composite structures: prediction based on ANNs [J]. Steel and Composite Structures, 2020, 36(5): 493-506.
[28] 史忠植. 神经网络 [M]. 北京:高等教育出版社, 2009.
[29] NGUYEN-TUONG D, SEEGER M W, PETERS. Model Learning with Local Gaussian Process Regression [J]. Advanced Robotics, 2009, 23(15): 2015-2034.
[30] RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health [J]. Journal of Power Sources, 2017, 357: 209-219.
[31] DEISENROTH M P, FOX D, RASMUSSEN C E. Gaussian Processes for Data-Efficient Learning in Robotics and Control [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(2): 408-423.
[32] 李琳娜, 钟东望, 黄小武,等. 基于动态预测的深水爆炸试验容器可靠性分析 [J]. 爆炸与冲击, 2021, 41(01): 117-124.
LI Lin-na,ZHONG Dong-wang,HUANG Xiao-wu,et al. Reliability analysis of deepwater explosion test vesselbased on dynamic prediction [J]. Explosion and Shock Waves, 2021, 41(01): 117-124.
[33] 王文竹, 李杰, 刘刚,等. 基于Kriging代理模型鼓式制动器稳定性的优化设计 [J]. 振动与冲击, 2021, 40(11): 134-8+62.
WANG Wen-zhu,LI Jie,LIU Gang,et al. Optimization design of drum brake stability based on Kriging surrogate model [J]. Journal of Vibration and Shock, 2021, 40(11): 134-8+62.
[34] DEB K, PRATAP A, AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[35] LIU X Y, FEATHERSTON C A, KENNEDY D. Two-level layup optimization of composite laminate using lamination parameters [J]. Composite Structures, 2019, 211: 337-350.

PDF(2231 KB)

Accesses

Citation

Detail

段落导航
相关文章

/