基于VMD和Chirplet变换的结构损伤识别研究

张健1,程雪莉1,袁平平2,段明磊3,任伟新4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 282-288.

PDF(2153 KB)
PDF(2153 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 282-288.
论文

基于VMD和Chirplet变换的结构损伤识别研究

  • 张健1,程雪莉1,袁平平2,段明磊3,任伟新4
作者信息 +

Structural damage detection based on variational mode decomposition and the Chirplet transform

  • ZHANG Jian1, CHENG Xueli1, YUAN Pingping2, DUAN Minglei3, REN Weixin4
Author information +
文章历史 +

摘要

为识别结构损伤位置及对损伤程度进行量化,提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)和Chirplet变换的结构损伤识别方法。采用VMD对结构振动响应信号进行分解得到模态分量,并利用Chirplet变换对模态分量进行时频分析,构建模态分量Chirplet变换能量指标进行损伤位置识别,利用Chirplet时频熵对结构损伤程度进行量化。采用一个刚度变化的简支梁数值算例对所提方法进行了验证,结果表明,无论是单点损伤还是多点损伤,提出的方法均能准确识别结构的损伤位置及对损伤程度进行量化。

Abstract

In order to identify damage location and quantify damage degree, a structural damage detection method based on variational mode decomposition (VMD) and Chirplet transform was proposed. VMD was used to decompose structural vibration response signal to obtain modal components, and then Chirplet transform was applied for time-frequency analysis of the modal components. The energy index of modal component Chirplet transform was constructed for damage location identification, and the Chirplet transform time-frequency entropy was defined to quantify the degree of structural damage. The proposed method was verified by a numerical example of a simply supported beam with varied stiffness. The results show that the proposed method can accurately identify the damage location and quantify the damage degree of the structure regardless of single point damage or multi-point damage.

关键词

变分模态分解 / Chirplet变换 / 损伤识别 / 时频熵 / 损伤量化

Key words

variational mode decomposition / Chirplet transform / damage detection / time-frequency entropy / damage quantification

引用本文

导出引用
张健1,程雪莉1,袁平平2,段明磊3,任伟新4. 基于VMD和Chirplet变换的结构损伤识别研究[J]. 振动与冲击, 2023, 42(8): 282-288
ZHANG Jian1, CHENG Xueli1, YUAN Pingping2, DUAN Minglei3, REN Weixin4. Structural damage detection based on variational mode decomposition and the Chirplet transform[J]. Journal of Vibration and Shock, 2023, 42(8): 282-288

参考文献

[1] 陈红. 基于支持向量机的码头框架结构损伤识别方法研究[D]. 重庆交通大学, 2021.
Chen Hong. Research on damage identification method of wharf frame structure based on Support Vector Machine [D]. Chongqing Jiaotong University, 2021. (in Chinese)
[2] 王盟, 翁顺, 余兴胜, 等. 基于时变模态振型小波变换的结构损伤识别方法[J]. 振动与冲击, 2021, 40(16): 10-19.
Wang Meng, Weng Shun, Yu Xingsheng, Yan et al. Structural Damage Identification Method Based on Time-varying Modal Shape Wavelet Transform [J]. Journal of Vibration and Shock, 201, 40(16): 10-19. (in Chinese)
[3] 郭佳, 管德清. 基于梁连续抗弯刚度与小波变换的结构损伤识别方法研究[J]. 计算力学学报: 1-7.
Guo Jia, Guan Deqing. Research on Structural Damage Identification Method Based on Continuous Bending Stiffness and Wavelet Transform [J]. Chinese Journal of Computational Mechanics: 1-7. (in Chinese)
[4] 李惠, 鲍跃全, 李顺龙. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(08): 1-7.
Li Hui, Bao Yuequan, Li Shunlong,. Structural health monitoring data science and engineering [J]. Engineering mechanics, 2015, 32(08): 1-7. (in Chinese)
[5] 裴强, 刘小庆, 吴凯. 基于时频分析S变换的高层框架损伤识别研究[J]. 沈阳建筑大学学报, 2018, 34(06): 981-987.
Pei Qiang, Liu Xiaoqing, Wu Kai. Damage identification of high-rise frame based on time-frequency analysis S transform [J]. Journal of shenyang jianzhu university, 2018, 34(06): 981-987. (in Chinese)
[6] Liew K M, Wang Q. Application of Wavelet Theory for Crack Identification in Structure[J]. Jounal of Engineering Mechanics, 1998, 124(2): 152-157.
[7] 刁延松. 基于神经网络和小波分析的海洋平台结构损伤检测研究[D]. 山东:中国海洋大学, 2006.
Diao Yansong. Damage Detection of Offshore Platform Structure Based on Neural Network and Wavelet Analysis [D]. Shandong: Ocean University of China, 2006.
[8] Douka E, HADJILEONTIADIS L J. Time-Frequency Analysis Of The Free Vibration Response Of A Beam With A Breathing Crack[J]. Ndt&E International, 2005, 38(1): 3-10.
[9] 刘景良, 任伟新, 黄文金, 等.基于同步挤压小波变换的时变结构损伤识别方法研究[J].振动与冲击, 2017, 36(21): 8-15+33.
Liu Jingliang, Ren Weixin, Huang Wenjin et al. Damage detection for time-varying strutures based on the synchrosqueezing wavelet transform[J]. Journal of vibration and shock, 2017, 36(21): 8-15+33. (in Chinese)
[10] Cawley P,Adams R D.The Location of Defece in Structures from Measurements of Natural Frequencies[J]. Joumal of Strain Analysis, 1979, 14(2): 49-57.
[11] 钟儒勉, 宗周红, 郑沛娟, 等. 基于节点曲率和小波分析的梁式桥多尺度损伤识别[J].振动与冲击, 2015, 34(12): 108-114
Zhong Rumian, Zong Zhouhong, Zheng Peijuan et al. Multi-scale damage identification of beam Bridges based on node-curvature and wavelet analysis [J]. Journal of vibration and shock, 2015, 34(12): 108-114 (in Chinese)
[12] Satish Mohanty,Karunesh Kumar Gupta,Kota Solomon Raju. Hurst based vibro-acoustic feature extraction of bearing using EMD and VMD[J]. Measurement, 2018, 117:
[13] 刘景良, 郑锦仰, 林友勤. 变分模态分解和同步挤压小波变换识别时变结构瞬时频率[J]. 振动与冲击, 2018, 37(20): 24-31.
Liu Jingliang, Zheng Jinyang, Lin Youqin. Journal of vibration and shock, 2018, 37(20): 24-31. (in Chinese)
[14] 时培明, 张慧超, 韩东颖. 基于改进自适应多元变分模态分解的轴承故障诊断方法研究[J]. 动力工程学报, 2022, 42(02): 129-137.
Shi Peiming, Zhang Huichao, Han Dongying. Research on Bearing Fault Diagnosis Method Based on Improved Adaptive Multivariate Variational Modal Decomposition [J]. Journal of Power Engineering, 202, 42(02): 129-137. (in Chinese)
[15] Zhang Yunqiang, Ren Guoquan, Wu Dinghai, Wang Huaiguang. Rolling bearing fault diagnosis utilizing variational mode decomposition based fractal dimension estimation method[J]. Measurement, 2021, 181(1-2): 109614.
[16] 杨秋玉, 阮江军, 黄道春. 基于VMD-Hilbert边际谱能量熵和SVM的高压断路器机械故障诊断[J]. 电机与控制, 2020, 24(03): 11-19.
Yang Qiuyu, Ruan Jiangjun, Huang Daochun. Mechanical Fault Diagnosis of High Voltage Circuit Breaker Based on VMD-Hilbert Marginal Spectrum Energy Entropy and SVM [J]. Electric machines and control, 2020, 24(03): 11-19. (in Chinese)
[17] 时培明, 张慧超, 韩东颖. 基于改进自适应多元变分模态分解的轴承故障诊断方法研究[J]. 动力工程学报, 2022, 42(02): 129-137.
Shi Peiming, Zhang Huichao, Han Dongying. Research on Bearing Fault Diagnosis Method Based on Improved Adaptive Multivariate Variational Modal Decomposition [J]. Journal of Power Engineering, 2022, 42(02): 129-137. (in Chinese)
[18] 张力新, 贾义红, 许敏鹏, 等. 基于Chirplet变换的变频视觉诱发电位脑-机接口研究[J]. 纳米技术与精密工程, 2014, 12(03): 157-161.
Zhang Lixin, Jia Yihong, Xu Minpeng, et al. Study on brain-computer interface of visual evoked potential based on Chirplet Transform [J]. Nanotechnology and precision engineering, 2014, 12(03):157-161. (in Chinese)
[19] 曾昭发 ,吴丰收, 黄玲, 等. 自适应Chirplet变换及其在探地雷达目标探测中的应用[J]. 2009, 6(02): 192-200+203.
Zeng Zhaofa, Wu Fengshou, Huang Ling, et al. Adaptive Chirplet transform and its application in GPR target detection [J]. 2009, 6(02): 192-200+203. (in Chinese)
[20] 杨芳, 高静怀. Chirplet变换中的参数选择研究[J]. 西安交通大学学报, 2006(06): 719-723.
Yang Fang, Gao Jinghuai. On the choice of parameters for the Chirplet transform[J]. Journal of Xi 'an Jiaotong University, 2006(06): 719-723. (in Chinese)
[21] 王胜春, 韩捷, 李志农, 等. 一种自适应Chirplet分解方法及在故障诊断中应用[J]. 振动工程学报, 2007(06): 606-612.
Wang Shengchun, Han Jie, Li Zhinong, et al. An Adaptive Chirplet Decomposition Method and Its Application in Fault Diagnosis [J]. Journal of Vibration Engineering, 2007(06): 606-612. (in Chinese)
[22] 刘景良, 任伟新, 王佐才, 等. 基于同步挤压小波变换的结构瞬时频率识别[J]. 振动与冲击, 2013, 32(18): 37-42+48.
Liu Jingliang, Ren Weixin, Wang Zuocai, et al. Journal of vibration and shock, 2013, 32(18): 37-42+48. (in Chinese)
[23] 王思帆. 基于小波能量的梁结构损伤位置及时变损伤识别[D]. 福建农林大学, 2019.
Wang Sifan. Identification of Beam Structure Damage Location based on Wavelet Energy and Timely variable Damage [D]. Fujian Agriculture and Forestry University, 2019. (in Chinese)
[24] 于德介, 张嵬, 程军圣, 等. 基于EMD的时频熵在齿轮故障诊断中的应用[J]. 振动与冲击, 2005(05): 29-30+32+132.
Yu Dejie, Zhang Wei, Cheng Junsheng, et al. Application of time-frequency entropy based on EMD in Gear fault Diagnosis [J]. Journal of Vibration and Shock, 2005(05): 29-30+32+132. (in Chinese)
[25] 林溪. 水下机器人推进器故障信号时频熵增强及故障辨识方法研究[D]. 江苏科技大学. 2020.
Lin Xi. Time-frequency Entropy Enhancement and Fault Identification method for Underwater Vehicle Propeller Fault Signal [D]. Jiangsu University of Science and Technology.2020. (in Chinese)

PDF(2153 KB)

Accesses

Citation

Detail

段落导航
相关文章

/