一种基于声学超表面的管道消声声衬设计研究

白宇,郁殿龙,张振方,蔡力

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 289-295.

PDF(1760 KB)
PDF(1760 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 289-295.
论文

一种基于声学超表面的管道消声声衬设计研究

  • 白宇,郁殿龙,张振方,蔡力
作者信息 +

An engine acoustic liner based on acoustic metasurface

  • BAI Yu, YU Dianlong, ZHANG Zhenfang, CAI Li
Author information +
文章历史 +

摘要

通过设计长度渐变的狭缝单元阵列,提出了一种基于梯度声学超表面的管道声衬模型。建立了该超表面声衬的声学特性数值仿真模型和理论计算模型,对其降噪特性及机理进行了分析,并探究了改变结构参数和声衬空间布局对降噪特性的影响,最后用实验验证了该超表面声衬的消声效果。结果表明,超表面结构使得声衬的降噪频段明显向低频拓展,并显著拓展其降噪频段,分析表明声衬的空间布局对其降噪效果也有很大影响。

Abstract

An engine acoustic liner model based on gradient acoustic hypersurface is proposed by designing a slit element array with variable length.Numerical simulation models and theoretical calculation models of the acoustic characteristics of the metasurface acoustic liner are established, noise reduction characteristics and mechanism are analyzed, and effects of changing the structural parameters and the spatial layout of the acoustic liner on the noise reduction characteristics are explored. Finally, the noise reduction effect of the metasurface acoustic liner is verified by experiments.The results show that the metasurface structure significantly expands the noise reduction frequency band of the acoustic liner to low frequency, and significantly expands its noise reduction frequency band. The analysis shows that the spatial layout of the acoustic liner also has a great influence on its noise reduction effect.

关键词

声学超表面 / 声衬 / 降噪 / 吸声

Key words

acoustic metamaterials / acoustic liner / noise reduction / sound absorption

引用本文

导出引用
白宇,郁殿龙,张振方,蔡力. 一种基于声学超表面的管道消声声衬设计研究[J]. 振动与冲击, 2023, 42(8): 289-295
BAI Yu, YU Dianlong, ZHANG Zhenfang, CAI Li. An engine acoustic liner based on acoustic metasurface[J]. Journal of Vibration and Shock, 2023, 42(8): 289-295

参考文献

[1] 柴凯,楼京俊,朱石坚,等.船舶典型管路系统低噪声设计研究[J].噪声与振动控制,2021,41(02):156-162+199.
Chai Kai, Lou Jingjun, Zhu Shijian, et al. Research on low noise design of typical ship pipeline system [J]. Noise and vibration control, 2021,41 (02): 156-162 + 199.
[2] 於为刚,赵正大,陈果,等.一种管道卡箍位置自动优化方法[J].噪声与振动控制,2019,39(01):29-33+40.
Yu Weigang, Zhao Zhengda, Chen Guo, et al. An automatic optimization method for pipe clamp position [J] Noise and vibration control, 2019,39 (01): 29-33 + 40.
[3] ZHAO J J, LI B W, CHEN Z N, et al. Redirection of sound waves using acoustic metasurface [J]. Applied Physics Letters, 2013, 103: 151604.
[4] ZHAO J J, LI B W, CHEN Z N, et al. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection[J]. Scientific Reports, 2013, 3: 2537.
[5] Li Y, Liang B, Gu Z, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J]. Scientific reports, 2013, 3(1): 1-6.
[6] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 2011, 334(6054): 333-337.
[7] Cai X, Guo Q, Hu G, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters, 2014, 105(12): 121901.
[8] Li Y, AssouarBM. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters, 2016, 108(6): 063502.
[9] Huang S, Fang X, Wang X, et al.  Acoustic perfect absorbers via Helmholtz resonators with embedded apertures[J]. The Journal of the Acoustical Society of America, 2019, 145(1):254-262.
[10] Gao Y X, Cheng Y, Liang B, et al. Acoustic skin meta-muffler[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 1-6.
[11] Huang S, Zhou E, Huang Z, et al. Broadband sound attenuation by metaliner under grazing flow[J]. Applied Physics Letters, 2021, 118(6): 063504.
[12] Huang S, Zhou Z, Li D, et al. Compact broadband acoustic sink with coherently coupled weak resonances[J]. Science Bulletin, 2020, 65(5): 373-379.
[13] Zhang C, Hu X. Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability[J]. Physical Review Applied, 2016, 6(6): 064025.
[14] Guo J, Fang Y, Jiang Z, et al. An investigation on noise attenuation by acoustic liner constructed by Helmholtz resonators with extended necks[J]. The Journal of the Acoustical Society of America, 2021, 149(1): 70-81.
[15] 薛东文,燕群,黄文超.短舱进气道声衬的多模态非均匀布局优化设计[J].计算机仿真,2019,36(08):61-65+81.
XueDongwen, Yan Qun, Huang Wenchao. Multimode non-uniform layout optimization design of nacelle inlet acoustic lining [J]. Computer simulation, 2019,36 (08): 61-65 + 81.
[16] Kim, SangRyul, Yang-Hann Kim, and Jae-Hee Jang. "A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array." The Journal of the Acoustical Society of America 119.4 (2006): 1933-1936.
[17] Selamet A, Ji Z L. Circular asymmetric Helmholtz resonators[J]. The Journal of the Acoustical Society of America, 2000, 107(5): 2360-2369.

PDF(1760 KB)

491

Accesses

0

Citation

Detail

段落导航
相关文章

/