带隙特性计算的等效梁元法与等效平面应变法

毛翔1,杨德庆1,2,李清1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 319-325.

PDF(1959 KB)
PDF(1959 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 319-325.
论文

带隙特性计算的等效梁元法与等效平面应变法

  • 毛翔1,杨德庆1,2,李清1
作者信息 +

An equivalent beam and equivalent plane strain method for bang gap analysis of metamaterials

  • MAO Xiang1, YANG Deqing1,2, LI Qing1
Author information +
文章历史 +

摘要

针对可简化为平面应变类力学问题的超材料,根据矩形薄板筒形弯曲理论,提出该类超材料带隙特性计算的等效梁元法。应用等效梁元法和常规等效平面应变法对负泊松比超材料的多种典型构型(内六角、星形、箭形和旋转三角形)的带隙特性进行了数值计算,比较两种方法在带隙计算精度、计算效率及拓扑优化中适用性等方面的差异,并经实验测试结果进行验证。研究表明,等效梁元法和等效平面应变法的带隙计算精度均较高,与实测值误差在7%以内。等效梁元法在带隙计算效率上比等效平面应变法高约50%,但拓扑优化基结构模型的规模较大,适用于杆件类超材料结构拓扑优化。等效平面应变法带隙计算效率较低,拓扑优化基结构模型的规模较小,适用于连续体类及骨架类超材料结构的拓扑优化。本研究可为带隙超材料的拓扑优化设计提供参考。

Abstract

Based on the barrel bending theory of rectangular thin plates, an equivalent beam element method is proposed for the calculation of bandgap properties of metamaterials that can be simplified in plane strain mechanical problem. The equivalent beam element method and the conventional equivalent plane strain method are applied to numerically calculate the bandgap characteristics of various typical configurations of negative Poisson's ratio metamaterials (re-entrant hexagonal, star-shaped, double arrowhead and rotating triangle), comparing the differences between the two methods in terms of bandgap calculation accuracy, calculation efficiency and applicability in topology optimization, and verified by experimental test results. It is shown that both the equivalent beam element method and the equivalent plane strain method have a high bandgap calculation accuracy, within 7% of the experimental measurements. The equivalent beam element method is about 50% more efficient than the equivalent plane strain method in bandgap calculation, but the scale of the topology optimization base structure model is larger and suitable for topology optimization of rod-like metamaterial structures. The equivalent plane strain method is less efficient in bandgap calculation and the size of the base structure model is smaller for topology optimization of continuum and skeleton metamaterials. This study can provide a reference for the design of bandgap topology optimization of metamaterials.

关键词

超材料 / 带隙特性 / 有限元分析 / 平面应变 / 薄板理论

Key words

 metamaterial / bandgap characteristics / finite element analysis / plane strain / thin plate theory

引用本文

导出引用
毛翔1,杨德庆1,2,李清1. 带隙特性计算的等效梁元法与等效平面应变法[J]. 振动与冲击, 2023, 42(8): 319-325
MAO Xiang1, YANG Deqing1,2, LI Qing1. An equivalent beam and equivalent plane strain method for bang gap analysis of metamaterials[J]. Journal of Vibration and Shock, 2023, 42(8): 319-325

参考文献

[1] 秦浩星, 杨德庆. 声子晶体负泊松比蜂窝基座的减振机理研究[J]. 振动工程学报, 2019, 32(03): 421-430.
Qin Haoxing, Yang Deqing. Vivration reduction mechanism for phononic crystal cellular mount with auxetic effect[J]. Journal of vibration engineering, 2019, 32(03): 421-430. (in Chinese)
[2] 罗英勤, 楼京俊, 张焱冰. 含局域共振单元复合材料格栅夹芯结构的吸声性能研究[J]. 振动与冲击, 2022: 291-296.
Luo Yingqin, Lou Jingjun, Zhang Yanbing. Sound absorption performance of composite grid sandwich structure with local resonance element[J]. Journal of vibration and shock, 2022,41(7): 291-296. (in Chinese)
[3] 李清. 船舶振动声学耦合分析及减振降噪超材料设计[D]. 上海交通大学, 2020.
 LI Qing. Ship Vibroacoustic Coupling Analysis and Noise Control Design with Metamaterials[D]. Shanghai: Shanghai Jiao Tong University, 2020(in Chinese).
[4] WANG Y, WANG Y, ZHANG C. Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures[J]. Journal of physics. D, Applied physics : A Europhysics Journal, 2014,47(48): 485102.
[5] CASADEI F, RIMOLI J J. Anisotropy-induced broadband stress wave steering in periodic lattices[J]. International Journal of Solids and Structures, 2013,50(9): 1402-1414.
[6] HUANG Y, LI J, CHEN W, et al. Tunable bandgaps in soft phononic plates with spring-mass-like resonators[J]. International Journal of Mechanical Sciences, 2019,151: 300-313.
[7] ZHANG K, ZHAO P, ZHAO C, et al. Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices[J]. Composite Structures, 2020,238: 111952.
[8] AN X, FAN H, ZHANG C. Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures[J]. Journal of Sound and Vibration, 2020,475: 115292.
[9] SIGMUND O, SØNDERGAARD JENSEN J. Systematic design of phononic band–gap materials and structures by topology optimization[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003,361(1806): 1001-1019.
[10] CHEN Y, GUO D, LI Y F, et al. Maximizing wave attenuation in viscoelastic phononic crystals by topology optimization[J]. Ultrasonics, 2019,94: 419-429.
[11] 吴明晨, 赵铮, 许卫锴. 多相材料声子晶体微结构的拓扑优化设计[J]. 科学技术与工程, 2020,20(33): 13547-13551. (in Chinese)
WU Mingchen, ZHAO Zheng, XU Weikai, Topolo-gy optimization of multi-phase microstructure phononic crystals[J]. Science Technology and Engineering, 2020,20(33): 13547-13551(in Chinese).
[12] 陈铁云, 陈伯真. 船舶结构力学[M]. 上海: 上海交通大学出版社, 1991.
Chen Tieyun, Chen Bozhen. Ship structure mechanics[M]. Shanghai: Shanghai Jiao Tong University Press, 1991. (in Chinese)
[13] CHEN W, ZHENG X, LIU S. Finite-Element-Mesh Based Method for Modeling and Optimization of Lattice Structures for Additive Manufacturing[J]. Materials, 2018,11(11): 2073.
[14] LI Q, YANG D. Vibro-acoustic performance and design of annular cellular structures with graded auxetic mechanical metamaterials[J]. Journal of Sound and Vibration, 2020,466: 115038.
[15] QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Journal of Impact Engineering, 2015,83: 47-58.
[16] MENG J, DENG Z, ZHANG K, et al. Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio[J]. Smart materials and structures, 2015,24(9): 95011.
[17] GRIMA J N, GATT R, ELLUL B, et al. Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations[J]. Journal of Non-Crystalline Solids, 2010,356(37-40): 1980-1987.
[18] 徐芝纶. 弹性力学 [M].北京:高等教育出版社,2016.
Xu Zhi-lun. Elasticity [M].BeiJing: Higher Education Press, 2016. (in Chinese)
[19] TRAINITI G, RIMOLI J J, RUZZENE M. Wave propagation in undulated structural lattices[J]. International Journal of Solids and Structures, 2016,97-98: 431-444.
[20] WANG P, CASADEI F, KANG S H, et al. Locally resonant band gaps in periodic beam lattices by tuning connectivity[J]. Physical review. B, Condensed matter and materials physics, 2015,91(2).
[21] ZHANG K, ZHAO P, ZHAO C, et al. Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices[J]. Composite Structures, 2020,238: 111952.

PDF(1959 KB)

520

Accesses

0

Citation

Detail

段落导航
相关文章

/