基于改进自适应陷波器的电磁轴承支承转子自动平衡控制

仝宇,田中梁,乔朝阳,刘梦龙,孙岩桦

振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 51-61.

PDF(3126 KB)
PDF(3126 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (8) : 51-61.
论文

基于改进自适应陷波器的电磁轴承支承转子自动平衡控制

  • 仝宇,田中梁,乔朝阳,刘梦龙,孙岩桦
作者信息 +

Automatic balance control of a rotor supported by magnetic bearings based on an improved adaptive notch filter

  • TONG Yu,TIAN Zhongliang,QIAO Zhaoyang,LIU Menglong,SUN Yanhua
Author information +
文章历史 +

摘要

针对转速信息未知情况下的电磁轴承支承转子不平衡振动抑制问题,提出了一种基于改进自适应陷波器(Adaptive Notch Filter, ANF)的自动平衡控制算法。首先,对传统ANF的结构和工作原理进行分析,讨论了相关控制参数的选取原则,并针对电磁轴承闭环系统嵌入ANF导致的低转速区失稳,设计了最优相位补偿器,在保证全转速范围稳定的情况下进一步优化了陷波性能。然后,根据相位补偿ANF输入输出信号之间的相位关系,设计了转速估器,通过变增益和归一化处理,不仅平衡了算法收敛速度和估计精度之间的矛盾,同时保证了各转速下的收敛特性一致。最后,通过仿真分析和实验研究对提出的算法进行验证。结果表明,设计的算法能够对未知的转子转速进行快速准确地估计,从而消除控制电流和电磁力中的转速同频分量,大幅抑制传递到基座上的振动力。该方法简化了轴承结构,降低了生产成本,实现了无转速传感器的自动平衡控制,在工业磁轴承领域有很好的应用前景。

Abstract

An automatic balance control algorithm based on improved adaptive notch filter (ANF) was proposed to suppress the unbalance vibration of the rotor supported by active magnetic bearings without the information of the rotation speed. Firstly, the structure and principle of the typical ANF were introduced, and the method to select the control parameters was discussed. In order to solve the instability problem of the system in low speed range which caused by the embedded ANF in the closed-loop system of the magnetic bearings, an optimal phase compensator was presented and the performance of the ANF was improved further while keeping the stability of the whole system in the full speed range. Then, a rotor speed estimator was designed according to the phase relationship between the input and output signals of the ANF. The contradiction between the convergence speed and the estimation accuracy was balanced through normalization of parameters of the estimator and the variable gain algorithm. Thus the convergence property of the estimator was consistent at different rotation speed. Finally, the proposed method was verified by simulation and experiments. The results showed that the speed estimator can quickly and accurately estimate the rotor speed from the displacement signals of the rotor, and the ANF can effectively eliminate the synchronous components in the control currents and the bearing forces. This method can realize the automatic balance control without speed sensor. It not only simplifies the bearing structure but also reduce the cost of the system, and has a good prospect in the industrial application of magnetic bearings.

关键词

主动电磁轴承 / 陷波器 / 转速估计 / 自动平衡 / 振动抑制

Key words

active magnetic bearing / notch filter / rotor speed estimation / automatic balancing / vibration suppression

引用本文

导出引用
仝宇,田中梁,乔朝阳,刘梦龙,孙岩桦. 基于改进自适应陷波器的电磁轴承支承转子自动平衡控制[J]. 振动与冲击, 2023, 42(8): 51-61
TONG Yu,TIAN Zhongliang,QIAO Zhaoyang,LIU Menglong,SUN Yanhua. Automatic balance control of a rotor supported by magnetic bearings based on an improved adaptive notch filter[J]. Journal of Vibration and Shock, 2023, 42(8): 51-61

参考文献

[1] 王忠博, 祝长生, 陈亮亮. 基于不平衡系数辨识的电磁轴承-刚性飞轮转子系统不平衡补偿控制[J]. 中国电机工程学报, 2018, 38(12): 3699-708.
 WANG Zhongbo, ZHU Changsheng, CHEN Liangliang. Unbalance Compensation Control of Active Magnetic Bearing-Rigid Flywheel Rotor System Based on Unbalance Coefficients Identification[J]. Proceedings of the CSEE, 2018, 38(12): 3699-708.
[2] 毛川, 祝长生. 主动电磁轴承–刚性转子系统实时变步长迭代不平衡补偿[J]. 中国电机工程学报, 2018, 38(13): 3960-8+4037.
 MAO Chuan, ZHU Changsheng. A Real-time Variable Step Size Iterative Unbalance Compensation for Active Magnetic Bearing-rigid Rotor Systems[J]. Proceedings of the CSEE, 2018, 38(13): 3960-8+4037.
[3] SUN H B, JIANG D, HU Z D,et al. Unbalance vibration compensation of magnetic bearing systems based on beetle antennae search algorithm [C]. Proceedings of the 11th IEEE International Electric Machines and Drives Conference, San Diego: Institute of Electrical and Electronics Engineers Inc., 2019: 1937-43.
[4] ZHENG Y B, LIU X N, ZHAO J J,et al. A novel iterative learning control method and control system design for active magnetic bearing rotor imbalance of primary helium circulator in high-temperature gas-cooled reactor [J]. Meas Control, 2020, 53(3-4): 474-84.
[5] XU Y P, WU H T, GUAN X D. Unbalance Suppression for AMB Rotor System Using APF-SRF Algorithm [J]. Shock and Vibration, 2020, 2020: 2606178.
[6] 岳壮壮, 欧阳慧珉, 张广明. 基于干扰观测器的磁轴承转子系统振动抑制[J]. 计算机仿真, 2019, 37(11): 255-9.
 YUE Zhuangzhuang, OUYANG Huimin, ZHUANG Guangming. Vibration Suppression of Rotor System of Magnetic Bearing Based on Disturbance Observer[J]. Computer Simulation, 2019, 37(11): 255-9.
[7] 巩磊, 祝长生. 基于四因子变极性控制的磁悬浮高速电机刚性转子同频振动抑制[J]. 中国电机工程学报, 2021, 41(04): 1515-24.
 GONG Lei, ZHU Changsheng. Synchronous Vibration Suppression for Magnetic Levitation High Speed Motor Rigid Rotors Based on 4-factor Polarity Switching Control[J]. Proceedings of the CSEE, 2021, 41(04): 1515-24.
[8] LIU G, LI J L, ZHENG S Q. Suppression of Synchronous Current Using Double Input Improved Adaptive Notch Filter Algorithm [J]. Ieee Transactions on Industrial Electronics, 2020, 67(10): 8599-607.
[9] LI J L, LIU G, ZHENG S Q,et al. Multi-Harmonic Adaptive Notch Filter based on Double Input [C]. Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon: IEEE Computer Society, 2019: 455-60.
[10] PENG C, ZHOU X X, WEI T,et al. High precision synchronous vibration suppression for a MSFW subject to phase lag influence [J]. Mechanical Systems and Signal Processing, 2019, 120: 408-21.
[11] HU L, MING D. Research on Vibration of Magnetic Suspension Rotor System Caused by Magnetic Bearing Model Error-Closed-Loop Paramter Identification Method [C]. Proceedings of the 2nd International Conference on Frontiers of Materials Synthesis and Processing, Sanya: Institute of Physics Publishing, 2019: 1.
[12] XU X B, LIU J H, CHEN S. Synchronous Force Elimination in the Magnetically Suspended Rotor System With an Adaptation to Parameter Variations in the Amplifier Model [J]. Ieee Transactions on Industrial Electronics, 2018, 65(12): 9834-42.
[13] PENG C, ZHU M T, WANG K,et al. A two-stage synchronous vibration control for magnetically suspended rotor system in the full speed range [J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 480-9.
[14] YU Y J, YANG Z H, HAN C,et al. Active Vibration Control of Magnetically Suspended Wheel Using Active Shaft Deflection [J]. Ieee Transactions on Industrial Electronics, 2017, 64(8): 6528-37.
[15] FEKRY M, MOHAMED A M, FANNI M. Robust Q-parametrisation control for nonlinear magnetic bearing systems with imbalance based on TSK fuzzy model [J]. International Journal of Modelling Identification and Control, 2018, 29(3): 195-208.
[16] KUMAR P, TIWARI R. Development of a Novel Approach for Quantitative Estimation of Rotor Unbalance and Misalignment in a Rotor System Levitated by Active Magnetic Bearings [J]. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 2020, 45(3): 769-86.
[17] CUI P L, ZHANG G X, LIU Z Y. A Second-Order Dual Mode Repetitive Control for Magnetically Suspended Rotor [J]. Ieee Transactions on Industrial Electronics, 2020, 67(6): 4946-56.
[18] 吴海同, 周瑾, 张越,等. 基于二阶广义积分-锁频环的磁悬浮转子自适应自动平衡[J]. 中国电机工程学报, 2020: 1-11.
 WU Haitong, ZHOU Jin, ZHANG Yue,et al. Adaptive Auto Balancing of Magnetically Suspended Rotor Based on Second Order Generalized Integrator-Frequency Locked Loop[J]. Proceedings of the CSEE, 2020: 1-11.
[19] CHEN Q, LIU G, HAN B C. Unbalance vibration suppression for AMBs system using adaptive notch filter [J]. Mechanical Systems and Signal Processing, 2017, 93: 136-50.
[20] VASHISHT R K, PENG Q J. Adaptive hybrid control of unbalanced vibrations of a rotor/active magnetic bearing system with coupling misalignment using low cost instrumentation [J]. JVC/Journal of Vibration and Control, 2019, 25(15): 2151-74.
[21] MANNGARD M, BOLING J M. Online frequency estimation with applications to engine and generator sets [J]. Mechanical Systems and Signal Processing, 2017, 91: 233-49.
[22] SCHWEITZER G, MASLEN E H. Magnetic Bearings-Theory, design and application to rotating machinery [M]. Berlin: Springer, 2009: 215-220.
[23] ZHENG S Q, CHEN Q, REN H L. Active Balancing Control of AMB-Rotor Systems Using a Phase-Shift Notch Filter Connected in Parallel Mode [J]. Ieee Transactions on Industrial Electronics, 2016, 63(6): 3777-85.
[24] BODSON M, DOUGLAS S C. Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency [J]. Automatica, 1997, 33(12): 2213-21.

PDF(3126 KB)

443

Accesses

0

Citation

Detail

段落导航
相关文章

/