波能转换装置耦合振动非线性水动力特性研究

耿大洲1,2,陈启卷1,2,郑阳1,2,顾兴远1,2,牛玉博1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 135-144.

PDF(3056 KB)
PDF(3056 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 135-144.
论文

波能转换装置耦合振动非线性水动力特性研究

  • 耿大洲1,2,陈启卷1,2,郑阳1,2,顾兴远1,2,牛玉博1,2
作者信息 +

Nonlinear hydrodynamic characteristics of coupled vibration of wave energy converter

  • GENG Dazhou1,2, CHEN Qijuan1,2, ZHENG Yang1,2, GU Xingyuan1,2, NIU Yubo1,2
Author information +
文章历史 +

摘要

针对一种新型波能转换装置,开展非线性水动力特性研究。在势流理论基础上,考虑装置不规则外形(不对称,且水线面面积不恒定)与位置变化等非线性因素对回复力的影响,并引入Morison模型分析流体粘性的附加惯性力效应与阻力效应,建立包含主要的线性与非线性水动力、从波能捕获到转换全过程的非线性动力学模型。利用计算流体动力学法搭建数值波浪水槽,开展波能转换装置响应的准确模拟,并将数值波浪水槽与所提出的非线性动力学模型的结果对比,进行非线性水动力的效应研究和系数辨识。结果表明:传统线性模型造成对波能转换性能的过高估计,非线性水动力模型显著提高了自由衰减振荡、波浪-装置耦合响应等过程的计算精度;Morison模型系数在不同工况中是变化的,幅值响应因子的计算在共振频率附近对Morison模型系数的敏感性最高。研究结果可为准确、快捷地衡量波能转换装置性能提供指导。

Abstract

A novel wave energy converter (WEC) was studied and its nonlinear hydrodynamics characteristics were analysed. Based on potential flow theory, the influences of WEC’s irregular shape (asymmetry, non-constant waterplane area) and position variation on restoring force were considered, and the Morison model was introduced to analyze added inertial effect and drag effect of fluid viscosity. Therefore, the complete nonlinear dynamics model was proposed, consisting of main linear and nonlinear hydrodynamics and describing processes from wave energy capture to conversion. The numerical wave tank was established using Computational Fluid Dynamics (CFD) method to accurately simulate WEC’s responses. The results of CFD and nonlinear dynamics model were compared to investigate nonlinear hydrodynamics effect and identify coefficients. The results show that conventional linear model overestimates performance of WEC and nonlinear model significantly improves evaluation accuracy of free decay motion and wave-WEC interaction; the Morison model coefficients vary with working conditions; response amplitude operator is more sensitive to Morison model coefficients near resonance frequency; the study can provide guidance for assessing WEC performance correctly and conveniently.

关键词

波能转换装置 / 非线性水动力 / 数值波浪水槽 / 波浪-装置耦合响应

Key words

wave energy converter / nonlinear hydrodynamics / numerical wave tank / wave-WEC interaction

引用本文

导出引用
耿大洲1,2,陈启卷1,2,郑阳1,2,顾兴远1,2,牛玉博1,2. 波能转换装置耦合振动非线性水动力特性研究[J]. 振动与冲击, 2023, 42(9): 135-144
GENG Dazhou1,2, CHEN Qijuan1,2, ZHENG Yang1,2, GU Xingyuan1,2, NIU Yubo1,2. Nonlinear hydrodynamic characteristics of coupled vibration of wave energy converter[J]. Journal of Vibration and Shock, 2023, 42(9): 135-144

参考文献

[1] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021,51(5):1-13.
LIU Yan-jun, WU Shuang, WANG Deng-shuai, et al. Research progress of ocean wave energy converters [J]. Journal of Shandong University (Engineering Science), 2021,51(5):1-13.
 [2] Penalba M, Giorgi G, Ringwood J V. Mathematical modelling of wave energy converters: A review of nonlinear approaches[J]. Renewable and Sustainable Energy Reviews, 2017,78:1188-1207.
 [3] Jin S, Patton R J, Guo B. Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment[J]. Renewable Energy, 2018,129:500-512.
 [4] Sheng W. Wave energy conversion and hydrodynamics modelling technologies: A review[J]. Renewable and Sustainable Energy Reviews, 2019,109:482-498.
 [5] Zabala I, Henriques J C C, Blanco J M, et al. Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices[J]. Renewable and Sustainable Energy Reviews, 2019,111:535-549.
 [6] Beatty S J, Hall M, Buckham B J, et al. Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves[J]. Ocean Engineering, 2015,104:370-386.
 [7] Son D, Belissen V, Yeung R W. Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor[J]. Renewable Energy, 2016,92:192-201.
 [8] Guo B Y, Patton R, Jin S Y, et al. Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion[J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018,9(1):453-461.
 [9] Ishihara T, Zhang S. Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients[J]. Renewable Energy, 2019,131:1186-1207.
[10] Ning D, Zhao X, Zhao M, et al. Analytical investigation of hydrodynamic performance of a dual pontoon WEC-type breakwater[J]. Applied Ocean Research, 2017,65:102-111.
[11] Zhang H, Zhou B, Vogel C, et al. Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter[J]. Applied Energy, 2020,257:113996.
[12] 周亚辉, 杨兴林, 周效国, 等. 穿孔式双浮体装置水动力及波能转换特性研究[J]. 振动与冲击, 2021,40(05):211-217.
ZHOU Ya-hui, YANG Xing-lin, ZHOU Xiao-guo, et al. Hydrodynamic and wave energy conversion characteristics of perforated double-floating body device [J]. Journal of Vibration and Shock, 2021,40(05):211-217.
[13] Sheng W, Alcorn R, Lewis A. A new method for radiation forces for floating platforms in waves[J]. Ocean Engineering, 2015,105:43-53.
[14] Duclos G, Clement A H, Chatry G. Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition[J]. INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2001,11(3):168-175.
[15] Taghipour R, Perez T, Moan T. Hybrid frequency–time domain models for dynamic response analysis of marine structures[J]. Ocean Engineering, 2008,35(7):685-705.
[16] Geng D, Zheng Y, Chen Q, et al. Novel hydraulic mechanism-based output power regulation for the wave energy converter[J]. Applied Ocean Research, 2021,110:102587.
[17] Falnes J, Perlin M. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction[M]. United Kingdom: Cambridge University Press, 2003.
[18] Giorgi G, Ringwood J V. Nonlinear Froude-Krylov and viscous drag representations for wave energy converters in the computation/fidelity continuum[J]. Ocean Engineering, 2017,141:164-175.
[19] Windt C, Davidson J, Ringwood J V. High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks[J]. Renewable and Sustainable Energy Reviews, 2018,93:610-630.
[20] 黄修长, 苏智伟, 师帅康, 等. 泵喷分布式脉动压力激励下泵喷艇体耦合系统振动声辐射[J]. 振动与冲击, 2021,40(18):1-9.
HUANG Xiu-chang, SU Zhi-wei, SHI Shuai-kang, et al. Vibro-acoustic responses of a coupled pump-jet suboff system under distributed unsteady hydrodynamics by a pump-jet [J]. Journal of Vibration and Shock, 2021,40(18):1-9.

PDF(3056 KB)

Accesses

Citation

Detail

段落导航
相关文章

/