格林函数反演泥石流石块冲击力的光纤传感试验方法

杨超平1,2,张少杰1,夏曼玉1,杨红娟1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 145-150.

PDF(1387 KB)
PDF(1387 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 145-150.
论文

格林函数反演泥石流石块冲击力的光纤传感试验方法

  • 杨超平1,2,张少杰1,夏曼玉1,杨红娟1
作者信息 +

Optical fiber sensing test method for inversion of impact force of debris flow rocks with Green’s function

  • YANG Chaoping1,2, ZHANG Shaojie1, XIA Manyu1, YANG Hongjuan1
Author information +
文章历史 +

摘要

梳齿坝等结构体在受到泥石流石块撞击时可被简化为悬臂梁。基于悬臂梁变形的静力学理论方法是求解石块撞击悬臂梁的冲击力的主要方法之一,但它无法反应泥石流石块撞击结构的动力学场景。针对石块撞击悬臂梁的动力学特性,本研究基于光纤光栅传感技术,通过落锤模拟泥石流中的石块,开展了7组不同工况的落锤冲击试验,并通过格林函数对落锤的冲击力时程进行反演。结果表明: 格林函数能有效反演石块撞击悬臂梁的冲击力时程。冲击力反演结果的精度受制于解调仪的采样频率,其试验标定的误差为15.3%,静力学法计算结果比本文计算结果高3-5倍。因此,本研究在解决了如何描述泥石流石块撞击悬臂梁的动力学特性这一科学问题的同时,反演结果也进一步获得提升,可有效为泥石流防治工程设计提供理论基础。

Abstract

Structures such as comb dam can be simplified as cantilever beam when they are impacted by debris flow boulders. The statics method based on the cantilever deformation is one of the main methods to calculate the boulder impact force, but it cannot describe the dynamic behavior of the structure. In view of the above issues, the falling weight was used to simulate the boulder of debris flow, and 7 groups of drop weight impact tests were performed based on the fiber grating sensing technology, and the hammer impact force under different working conditions was inverted by using Green’s function. The results show that Green’s function can effectively invert the boulder impact force. The inversion error is affected by the sampling frequency of the demodulator, which is about 15.3%, and the results calculated by the static method are 3-5 times higher than those calculated in this study. Therefore, this study solves the scientific problem of how to describe the dynamic characteristics of boulder impacting the cantilever beam, and further improves the inversion results, which can effectively provide a theoretical basis for the design of debris flow prevention and control engineering.

关键词

泥石流 / 石块冲击力 / 光纤光栅 / 格林函数

Key words

debris flow / boulder impact force / fiber Bragg grating / Green’s function

引用本文

导出引用
杨超平1,2,张少杰1,夏曼玉1,杨红娟1. 格林函数反演泥石流石块冲击力的光纤传感试验方法[J]. 振动与冲击, 2023, 42(9): 145-150
YANG Chaoping1,2, ZHANG Shaojie1, XIA Manyu1, YANG Hongjuan1. Optical fiber sensing test method for inversion of impact force of debris flow rocks with Green’s function[J]. Journal of Vibration and Shock, 2023, 42(9): 145-150

参考文献

[1] 康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004.
KANG Zhi-cheng, LI Zhuo-fen, MA Ai-nai, et al. Research on debris flow in China [M]. Beijing: Science Press, 2004.
[2] 李培振, 高宇, 郭沫君. 泥石流冲击力的研究现状[J]. 结构工程师, 2015, 31(01): 200–206.
LI Pei-zhen, GAO Yu, GUO Mo-jun. Research Status and Development Trend of Debris - flow Impact Force [J]. Structural Engineers, 2015, 31(01): 200–206.
[3] 李旭娟. 基于Green函数和正则化方法的载荷识别技术研究[D]. 成都: 西南交通大学, 2017:20–21.
LI Xu-juan. Study of load identification technique based on Green function [D]. Chengdu: Southwest Jiaotong University, 2017:20–21.
[4]  曹泽林, 陶夏新, 陶正如. 2021年玛多7.4级地震近断裂三分量地震动场合成[J]. 世界地震工程, 2021, 37(04): 1–11.
CAO Ze-lin, TAO Xia-xin, TAO Zheng-ru. Simulation of three-component near-fault ground motions during the 2021 Maduo M7.4 earthquake [J]. World Earthquake Engineering, 2021, 37(04): 1–11.
[5] Kean J W, Coe J A, Coviello V, et al. Estimating rates of debris flow entrainment from ground vibrations[J]. Geophysical Research Letters, Wiley Online Library, 2015, 42(15): 6365–6372.
[6] Zhang Z, He S M, Liu W, et al. Source characteristics and dynamics of the October 2018 Baige landslide revealed by broadband seismograms[J]. Landslides, 2019, 16(4): 777–785.
[7] Baptista M A, Miranda J M, Omira R, et al. Study of the 24 September 2013 Oman Sea tsunami using linear shallow water inversion[J]. Arabian Journal of Geosciences, Springer, 2020, 13(14): 1–12.
[8] Hu K H, Wei F Q, Li Y. Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China[J]. Earth Surface Processes and Landforms,
[9] 夏曼玉, 张少杰, 杨红娟, 等. 基于光纤传感技术的泥石流冲击力测量系统与反演方法[J]. 地球科学与环境学报, 2021, 43(06): 1009–1017.
XIA Man-yu, ZHANG Shao-jie, YANG Hong-juan, et al. Fiber Sensing Technique Based System to Measure and Invert Debris Flow Impact Force [J]. Journal of Earth Sciences and Environment, 2021, 43(06): 1009–1017.
[10] Li H-J, Zhu H-H, Li Y-H, et al. Fiber Bragg grating-based flume test to study the initiation of landslide-debris flows induced by concentrated runoff[J]. Geotechnical Testing Journal, 2021, 44(4): 986–999.
[11] Han X, Wen H, Liu S, et al. Dual-fiber-Bragg gratings accelerometer for the detection of geosound caused by debris flow[J]. Optical Engineering, SPIE, 2017, 56(5): 056104.2011, 36(9): 1268–1278.
[12] 何祯鑫, 张正义, 李洪才, 等. 基于光纤 Bragg 光栅传感的轴向柱塞泵非介入式振动测量方法[J]. 振动与冲击, 2019, 38(20): 196–202.
HE Zhen-xin, ZHANG Zheng-yi, LI Hong-cai, et al. A non-intrusive vibration measurement method of an axial piston pump based on fiber Bragg grating sensing[J]. Journal of Vibration and Shock, 2019, 38(20): 196–202.
[13] Zhang S, Xu C, Chen J, et al. An experimental evaluation of impact force on a fiber Bragg grating-based device for debris flow warning[J]. Landslides, 2019, 16(1): 65–73.
[14] Mao Y-M, Guo X-L, Zhao Y. Experimental study of hammer impact identification on a steel cantilever beam[J]. Experimental Techniques, Springer, 2010, 34(3): 82–85.
[15]  Zhang S, Chen J. An experimental study: Integration device of Fiber Bragg grating and reinforced concrete beam for measuring debris flow impact force[J]. Journal of Mountain Science, 2017, 14(8): 1526–1536.
[16] 王晓军, 杨海峰, 邱志平, 等. 基于Green函数的动态载荷区间识别方法研究[J]. 固体力学学报, 2011, 32(01): 95–101.
WANG Xiao-jun, YANG Hai-feng, QIU Zhi-ping, et al. Research on interval identification method for dynamic loads based on Green's Function [J]. Chinese Journal of Solid Mechanics, 2011, 32(01): 95–101.
[17] 陆渊, 巨能攀, 张万泽, 等. 泥石流大块石对简支梁冲击力修正计算[J]. 科学技术与工程, 2019, 19(24): 76–81.
LU Yuan, JU Neng-pan, ZHANG Wan-zeng, et al. Correction Calculation of Large Stone Impact Force of Debris Flow Grille Dam [J]. Science Technology and Engineering, 2019, 19(24): 76–81.
[18] 章书成. 泥石流研究述评[J]. 力学进展, 1989, 19(003): 365–375.
ZHANG Shu-cheng. A Review of Debris Flow Research [J]. Advance in Mechanics, 1989, 19(003): 365–375.

PDF(1387 KB)

Accesses

Citation

Detail

段落导航
相关文章

/