ECC动态拉伸力学特性试验研究与数值模拟

李秀地,罗银剑,崔亚娇,傅鑫亮,蔡涛

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 161-167.

PDF(3548 KB)
PDF(3548 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 161-167.
论文

ECC动态拉伸力学特性试验研究与数值模拟

  • 李秀地,罗银剑,崔亚娇,傅鑫亮,蔡涛
作者信息 +

Test study and numerical simulation of dynamic tensile mechanical properties of ECC

  • LI Xiudi, LUO Yinjian, CUI Yajiao, FU Xinliang, CAI Tao
Author information +
文章历史 +

摘要

基于分离式SHPB装置对基体材料、不同纤维掺量的ECC在R1(5.8~6.9 s-1)、R2(9.7~13.3 s-1)、R3(14.4~18.9 s-1)、R4(19.2~28.5 s-1)四个应变率范围下进行冲击劈裂拉伸试验。探究基体材料、ECC在不同应变率下的动态力学特性及纤维掺量对ECC力学性能的影响。试验表明基体材料、ECC的动态劈裂拉伸强度均具有显著的应变率增强效应;纤维掺量小于2.3%时,纤维掺量与动态劈裂抗拉强度呈现出正相关。此外,通过试验发现基体材料的吸能能力与试件的破碎形态有关,随着纤维掺量的增加ECC破碎程度减小,微裂缝增多。通过拟合试验数据修正了ECC的应变率效应,并将修正后的模型嵌入到LS-DYNA中,基于新建模型对试验的全过程进行数值模拟分析,相较于试验数据,模拟结果最大误差为8%。最小误差为2.3%,试件的破坏形态吻合程度较高,数值模拟结果表明新建ECC材料模型能够较好表现ECC动态拉伸特性。

Abstract

Based on the separated SHPB device, ECC was tested in R1 (5.8~6.9s-1), R2 (9.7~13.3s-1), R3 (14.4~18.9s-1), R4 (19.2~28.5s-1) to explore the dynamic mechanical characteristics of matrix material and ECC at different strain rates and the influence of fiber incorporation on ECC.The test shows that the dynamic split tensile strength of ECC has significant strain rate enhancement effect;At less than 2.3%, the fiber incorporation showed a positive correlation with the dynamic split tensile strength.In addition, it was found that the energy absorption capacity of the matrix material is related to the crushing form of the specimen, and the degree of ECC fragmentation is increased with the increase of fiber incorporation.The strain rate effect of ECC was corrected by fitting the test data, and the modified model was embedded into LS-DYNA. The numerical simulation analysis of the whole process based on the new model, with a maximum error of 8% compared to the test data.The minimum error is 2.3%, and the failure morphology of the specimen is high. The above results show that the new ECC material model can perform the ECC dynamic stretching characteristics better.

关键词

ECC / 冲击劈裂拉伸 / 耗能 / SHPB / 破坏形态

Key words

ECC / Impact split stretch / energy consumption / destructive form

引用本文

导出引用
李秀地,罗银剑,崔亚娇,傅鑫亮,蔡涛. ECC动态拉伸力学特性试验研究与数值模拟[J]. 振动与冲击, 2023, 42(9): 161-167
LI Xiudi, LUO Yinjian, CUI Yajiao, FU Xinliang, CAI Tao. Test study and numerical simulation of dynamic tensile mechanical properties of ECC[J]. Journal of Vibration and Shock, 2023, 42(9): 161-167

参考文献

[1] 江世永,龚宏伟,姚未来,等.ECC材料力学性能与本构关系研究进展[J].材料导报,2018,32(23):4192-4204.
[2] MAALEJ M, QUEK S T, ZHANG J. Behavior of Hybrid-Fiber Engineered Cementitious Composites Subjected to Dynamic Tensile Loading and Projectile Impact[J].Journal of Materials in Civil Engineering,2005,17(2):143-152.
[3] MAALEJ M, ZHANG J, QUEK S T,et al.High-velocity impact resistance of hybrid-fiber engineered cementitious composites [J].Advanced Materials Research,2003,1616(901):56-63.
[4] MECHTCHERINE V, MILLON O, BUTLER M.Mechanical behavior of SHCC under impact loading[J].High performance fiber reinforced cement composites,2012,6:297-304.
[5] MECHTCHERINE V, SILVA F A, BUTLER M, et al. Behaviour of strain-hardening cement-basedcomposites under high strain rates[J]. Journal of Advanced Concrete Technology, 2011,9(1): 51-62.
[6] MECHTCHERINE V, MILLON O, BUTLER M. Behaviour of SHCC under impact loading[J].Cem Concr Compos ,2011,22:1-11.
[7] YANG E H,VICTOR C.Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials,2014,52:96-104.
[8] 徐世烺,蔡向荣,张英华.超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J].土木工程学报,2009(11):79-86.
[9] Swanepoel W.The behavior of fiber reinforced concrete (SHCC) under biaxial compression and tension[D].South Africa: Stellenbosch University,2011.
[10] 焦楚杰,孙伟,高培正,等.钢纤维混凝土动力特行[M].北京:科学出版社出版社,2019.
[11] 王启智,贾学明.用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度—第一部分:解析和数值结果[J].岩石力学与工程学报,2002(09):1285-1289.
[12] 杜超超,温森,孔庆梅.一维动静组合加载下复合岩样动态力学特性试验研究[J].振动与冲击,2021,40(21):168-178+206.
DU Chaochao, WEN Sen, KONG Qingmei. Study on dynamic mechanical properties of composite rock samples under 1 D dynamic combination loading [J]. Vibration and Impact, 2021,40 (21): 168-178 + 206.
[14] 焦振华,穆朝民,王磊,等.被动围压下煤冲击压缩动态力学特性试验研究[J].振动与冲击,2021,40(21):185-193.
JIAO Zhenhua, MU omin, WANG Lei, et al. Study on dynamic mechanical properties of coal impact compression under passive ambient pressure [J]. Vibration and Impact, 2021,40 (21): 185-193.
[15] 李俊,孙明清,王应军,等.PVA纤维表面覆油量对SHCC拉伸 性能的影响[J].华中科技大学学报(自然科学版),2015,43(10):128 -132.
    Li Jun, Sun Ming and Qing Dynasties, Wang Yingjun, et al. Effect of PVA fibers on tensile properties of SHCC [J]. Journal of Huazhong University of Science and Technology (Natural Science edition), 2015,43 (10): 128-132.
[16]杨惠贤.纤维增强水泥基复合材料的动态力学性能及动态本构模型研究[D].广州:华南理工大学,2016.
YANG Huixian. Study on the dynamic mechanical properties and dynamic constitutive model of fiber-reinforced cement matrix composite material [D]. Guangzhou: South China University of Technology, 2016.
[17] N. Gebbeken, M. Ruppert, A new material model for concrete in high-dynamic hydrocode simulations [J]. Archive of Applied Mechanics, 2000, 70(7):463-478.
[18] 徐世烺,吴平,李庆华,等.超高韧性水泥基复合材料K&C模型参数确定[J].建筑结构学报,2022,43(06):233-244+256.
Xu Shi-lang, Wu Ping, Li Qinghua, et al. Deameters of K & C model [J]. Journal of Structural Architecture, 2022,43 (06): 233-244 + 256.

PDF(3548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/