非平稳激励下绝对位移直接求解非线性结构的时频分析

李喜梅1,2,陶铖1,2,王建成3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 168-176.

PDF(2670 KB)
PDF(2670 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 168-176.
论文

非平稳激励下绝对位移直接求解非线性结构的时频分析

  • 李喜梅1,2,陶铖1,2,王建成3
作者信息 +

Time-frequency analysis of nonlinear structure excitation input directly solved with absolute displacement under non-stationary excitation

  • LI Ximei1,2, TAO Cheng1,2, WANG Jiancheng3
Author information +
文章历史 +

摘要

强震作用下地震动能量的时-频演变特性对迟滞非线性的结构有着极大影响,然而通用有限元软件现有的计算模块进行频域分析时不能对非线性结构输入解耦的EPSD矩阵,限制了随机振动理论对大型复杂结构的仿真计算。将绝对位移直接求解的虚拟激励法引入多维多点的非线性动力方程,通过APDL的外部程序调用接口对非平稳地震动EPSD矩阵进行解耦与降维处理,并转化为独立于时间变量的四维均匀调制激励矩阵,实现对非线性结构精确高效的非平稳激励动态输入与随机动力响应的计算求解。最后以一座中承式三跨钢管混凝土系杆拱桥为例,计算拱肋、拱脚和桥面系响应的时变功率谱及方差。结果表明,绝对位移直接求解的激励输入方式很好地模拟了非线性结构体系所带来的时滞现象,为通用有限元软件实现非线性结构多维多点非平稳激励随机响应的求解与分析提供了可行性依据。

Abstract

The time-frequency evolution characteristics of ground motion energy under strong earthquakes have a great impact on hysteretic nonlinear structures. However, the existing calculation modules of general finite element software cannot input the decoupled EPSD matrix for nonlinear structures when performing frequency domain analysis, which thus limits the simulation of large complex structures by random vibration theory. The pseudo excitation method of absolute displacement direct solution was introduced into the multi-dimensional and multi-point nonlinear dynamic equation, and the non-stationary ground motion EPSD matrix was decoupled and dimension-reduced through the APDL external program call interface, and transformed into a four-dimensional uniformly modulated excitation matrix which is independent of the variable of time. The matrix can achieve accurate and efficient calculation and solution of non-stationary excitation dynamic input and random dynamic response of nonlinear structures. Finally, taking a half-through three-span CFST tied arch bridge as an example, the time-varying power spectrum and variance of the system responses of arch rib, arch foot and bridge deck were calculated. The results show that the excitation input method of absolute displacement direct solution can simulate the time-delay phenomenon caused by nonlinear structural system very well, which can provide a feasible basis for the solution and analysis of multi-dimensional and multi-point non-stationary excitation random response of nonlinear structure by the general finite element software.

关键词

大跨桥梁 / 虚拟激励法 / 非平稳激励 / 绝对位移 / 多维多点

Key words

Large-span bridge / pseudo excitation method / non-stationary excitation / absolute displacement / multi-dimensional and multi-support

引用本文

导出引用
李喜梅1,2,陶铖1,2,王建成3. 非平稳激励下绝对位移直接求解非线性结构的时频分析[J]. 振动与冲击, 2023, 42(9): 168-176
LI Ximei1,2, TAO Cheng1,2, WANG Jiancheng3. Time-frequency analysis of nonlinear structure excitation input directly solved with absolute displacement under non-stationary excitation[J]. Journal of Vibration and Shock, 2023, 42(9): 168-176

参考文献

[1] K. Kanai, Semi-empirical formula for the seismic characteristics of the ground,Bull Earthq. Res.Inst.Univ.Tokio 35 (1957)309–325.
[2] Petromichelakis I, Kougioumtzoglou I A. Addressing the curse of dimensionality in stochastic dynamics: A Wiener path integral variational formulation with free boundaries[J]. Proceedings of the Royal Society A, 2020, 476(2243): 20200385.
[3] Kong F, Han R, Li S, et al. Non-stationary approximate response of non-linear multi-degree-of-freedom systems subjected to combined periodic and stochastic excitation[J]. Mechanical Systems and Signal Processing, 2022, 166: 108420.
[4] Chen J, Kong F, Peng Y. A stochastic harmonic function representation for non-stationary stochastic processes[J]. Mechanical Systems and Signal Processing, 2017, 96: 31-44.
[5] Ponsioen S, Pedergnana T, Haller G. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis[J]. Journal of Sound and Vibration, 2018, 420: 269-295.
[6] Petromichelakis I, Kougioumtzoglou I A. A computational algebraic geometry technique for determining nonlinear normal modes of structural systems[J]. International Journal of Non-Linear Mechanics, 2021, 135: 103757.
[7] Roy S, Das D, Banerjee D. Vibrational resonance in a bistable van der Pol–Mathieu–Duffing oscillator[J]. International Journal of Non-Linear Mechanics, 2021, 135: 103771.
[8] Xu F, Ma X. An efficient simulation algorithm for non-Gaussian nonstationary processes[J]. Probabilistic Engineering Mechanics, 2021, 63: 103105.
[9] Han X, Pagnacco E. Response EPSD of chain-like MDOF nonlinear structural systems via wavelet-Galerkin method[J]. Applied Mathematical Modelling, 2022, 103: 475-492.
[10] 徐梓栋,王浩,梁瑞军.非负矩阵分解在地震作用下结构随机响应分析中的应用[J].振动与冲击,2021,40(07):188-192.
XU Zidong,WANG Hao,LIANG Ruijun. Application of nonnegative matrix factorization in structural random response analysis under earthquake action[J].Journal of Vibration and Shock,2021,40(07):188-192.
[11] Yao E, Miao Y, Wang S, et al. Simulation of fully nonstationary spatially variable ground motions on a canyon site[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 198-204.
[12] AMIN M,ANG A H S.Nonstationary stochastic model of earthquake motion [J]. Journal of Engineering Mechanics,1968,94(EM2):559-583.
[13] 林家浩,张亚辉.随机振动的虚拟激励法 [M]. 北京: 科学出版社,2004.
[14] 孟思博,丁阳.跨海桥梁随机非平稳风浪同步模拟方法 [J].天津大学学报(自然科学与工程技术版),2020,53(10):1045-1052.
MENG Sibo,DING Yang. Synchronous Simulation of Random Nonstationary Wind and Waves Around Coastal Bridges. Journal of Tianjin University,2020,53(10):1045-1052.
[15] 孟思博,丁阳.地震和波浪联合作用下斜拉桥随机动力分析方法 [J].振动与冲击,2020,39(17):194-202.
MENG Sibo,DING Yang. Stochastic dynamic analysis method for a cable-stayed bridge under combined actions of earthquake and waves [J]. Journal of Vibration and Shock,2020,39(17):194-202.
[16] 李永华,李思明.绝对位移直接求解的虚拟激励法 [J]. 振动与冲击,2009, 28(10):185-190+234.
LI Yong-hua,LI Si-ming.Pseudo excitation method based on solving absolute displacement [J]. Journal of Vibration and Shock, 2009, 28(10) : 185 -190.
[17] 石永久,江洋,王元清.直接求解法在结构多点输入地震响应计算中的应用与改进 [J]. 工程力学,2011,28(01):75-81.
SHI Yong-jiu, JIANG Yang, WANG Yuan-qing. Application and improvement of direct solving method in seismic response analysis of structures under multi-support excitations[J].Engineering Mechanics, 2011,28(1):75-81.
[18] 李永华,桂国庆.相对运动法与绝对位移直接求解法算法误差分析 [J]. 土木建筑与环境工程,2011, 33(05):83-89.
LI Yong-hua, GUI Guo-qing.Error analysis between relative motion solving method and absolute displacement direct solving method [J]. Journal of Civil, Architectural & Environmental Engineering,2011,33(5) : 83-89.
[19] 李永华,桂国庆,廖宇.绝对位移直接求解虚拟激励法采用附加振型求解的理论研究 [J]. 振动与冲击,2015,34(08):12-19.
LI Yong-hua, GUI Guo-qing, LIAO Yu1. Pseudo excitation method based on directly solving absolute diaplacements with addtional modes [J].Journal of Vibration and Shock, 2015,34(08):12-19.
[20] 贾宏宇,郑史雄.直接求解多维多点地震动方程的虚拟激励法 [J]. 工程力学,2013,30(03):341-346.
JIA Hong-yu, ZHENG Shi-xiong. Pseudo excitation method of direct solving ground motion equation of multi-dimensional and multi-support excitation [J].Engineering Mechanics, 2013,30(3):341-346.
[21] 贾宏宇,郑史雄,阳栋,等.非平稳多维多点虚拟激励法的快速模拟方法 [J]. 振动与冲击,2013,32(18):108-112+132.
JIA Hong-yu, ZHENG Shi-xiong, YANG Dong,et al. Fast simulation technique for non-stationary multi-dimensional and multi-support pseudo excitation method [J].Journal of Vibration and Shock, 2013,32(18):108-112+132.
[22] 罗晓峰,项贻强.基于统计线性化的非线性随机振动虚拟激励法研究及应用 [J].振动与冲击,2013,32(06):1-5+62.
LUO Xiao-feng, XIANG Yi-qiang. Pseudo excitation method for nonlinear random response calculation based on statistical linearization technique and its application [J]. Journal of Vibration and Shock, 2013,32(06):1-5+62.
[23] 范晨阳,郑史雄,陈航,等.行波及相干效应对超千米跨度斜拉桥多维多点随机地震响应的影响[J].铁道标准设计,2016,60(08):54-58.
FAN Chen-yang, ZHENG Shi-xiong, CHEN Hang,et al.The Influence of Traveling Wave and Coherent Effects on Multi-dimensional and Multi-point Random Seismic Response of Super Long Span Cable Stayed Bridge [J]. Railway Standard Design, 2016,60(08):54-58.
[24] 陈志强,郑史雄,张宁,等.非平稳地震作用下强非线性结构动力可靠度分析[J].振动与冲击,2020,39(19):121-129.
CHEN Zhiqiang, ZHENG Shixiong, ZHANG Ning,et al. Dynamic reliability analysis for strong nonlinear structures under non-stationary earthquake[J]. Journal of Vibration and Shock,2020,39(19):121-129.
[25] Iwan W D, Yang I M. Application of statistical linearization technique to nonlinear multidegree-of-freedom systems [J]. Transaction of the ASME-Journal of Applied Mechanics, 1972,39(2):545-550.
[26] Lin J H, Zhang Y H, Li Q S, Williams F W. Seismic spatial effects for long-span bridges, using the pseudo excitation method [J]. Engineering Structures, 2004,26(9):1207-1216.
[27] Wang D, Wang L, Xu J, et al. A directionally-dependent evolutionary lagged coherency model of nonstationary horizontal spatially variable seismic ground motions for engineering purposes[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 58-71.
[28] 曹资,薛素铎.空间结构抗震理论 [M]. 北京: 科学出版社,2006.
[29] 郭秀秀, 李长宇, 史庆轩. 基于改进Bouc-Wen模型的非线性结构非平稳随机地震响应分析 [J].振动与冲击,2020,39(18):248-254+268.
GUO Xiuxiu,LI Changyu,SHI Qingxuan.Non-stationary stochastic seismic response analysis of a non-linear structure based on an improved Bouc-Wen model [J]. Journal of Vibration and Shock, 2020,39(18):248-254+268.
[30] 林家浩, 沈为平, 宋华茂. 结构非平稳随机响应的混合型精细时程积分 [J]. 振动工程学报,1995(02): 127-135.
Lin Jiahao, Shen Weiping, Song Huamao. High-Precision Integration of Mixed Type for Analysis of Non-Stationary Random Responses [J]. Journal of Vibration Engineering, 1995(02): 127-135.
[31] 赵灿晖, 周志祥. 多维非平稳随机地震响应分析的快速算法 [J].振动与冲击,2006,(05):62-64+73+192.
Zhao Canhui, Zhou Zhixiang. Effective calculation method of multi-components non stationary stochastic seismic response [J]. Journal of Vibration and Shock, 2006,(05):62-64+73+192.
[32] Park S T,Luu T T. Techniques for optimizing parameters of negative stiffness [J]. Journal of Mechanical Engineering Science, 2007,221(5) : 505-511.
[33] 屈铁军,王君杰,王前信. 空间变化的地震动功率谱的实用模型 [J]. 地震学报,1996,18(1) : 55-62.
QU Tie-jun, WANG Jun-jie, WANG Qian-xin. Practical PSD ground motion model with spatial effect [J]. Journal of Earthquake, 1996,18(1) : 55-62.

PDF(2670 KB)

Accesses

Citation

Detail

段落导航
相关文章

/