本文将牛顿迭代法的思想引入平均加速度法,对方程式以加速度项作为迭代变量进行内嵌一次牛顿迭代处理,推导出了一种新型的线性隐式数值积分方法。然后通过离散控制理论和根轨迹法分析了新算法在求解含非线性恢复力和非线性阻尼力的结构运动方程时维持稳定的条件,并利用一个单自由度剪切型结构,检验了新算法的非线性稳定性。最后通过数值模拟,考察了新算法对于非线性多自由度结构体系的适用性和可靠性。
Abstract
In this paper, the strategy of Newton iteration is introduced into the average acceleration method. A novel linear implicit numerical integration algorithm is derived by embedding once Newton iteration in the method with the acceleration term as the iteration variable. Then, according to discrete control theory and root locus method, the conditions for maintaining stability of the novel algorithm is derived when the novel algorithm is used to solve the structure with nonlinear restoring forces and nonlinear damping forces. Meanwhile, a single-degree-of-freedom shear- type structure is used to exam the stability of the novel algorithm in solving the problem with nonlinear restoring forces and nonlinear damping forces. Finally, the applicability and reliability of the novel algorithm in solving problems of multi-degree-of-freedom structures with nonlinear restoring forces and nonlinear damping forces is proved through numerical simulations.
关键词
非线性结构体系 /
平均加速度法 /
牛顿迭代法 /
动力响应分析
{{custom_keyword}} /
Key words
nonlinear structures /
the average acceleration method /
Newton iteration method /
dynamic response /
analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 迟福东,王进廷,金峰. 实时耦联动力试验的时滞稳定性分析[J]. 工程力学,2010(09): 12-16,54.
Chi Fu-dong, Wang Jin-ting, Jin Feng. DELAY-DEPENDENT STABILITY ANALYSIS OF REAL-TIME DYNAMIC HYBRID TESTING[J]. Engineering Mechanics, 2010(09): 12-16,54.
[2] Chen C, Ricles J M. Stability analysis of direct integration algorithms applied to MDOF Nonlinear Structural Dynamics[J]. Journal of Engineering Mechanics, 2010, 136(4): 485-495.
[3] Chang S Y. Explicit pseudodynamic algorithm with unconditional stability [J]. Journal of Engineering Mechanics, 2002, 128(9): 935‒947.
[4] Chen C, Rides J M. Development of direct integration algorithms for structural dynamics using discrete control theory[J]. Journal of Engineering Mechanics, 2008, 134(8): 676-683.
[5] H. Rosenbrock. Some general implicit processes for the numerical solution of differential equations[J]. Computer Journal, 1963,: 329-330.
[6] 付朝江. 结构非线性动力分析混合时间积分并行算法[J]. 力学与实践, 2010 ,32(3): 96-100.
Fu Chaojiang. MIXED TIME INTEGRATION PARALLEL ALGORITHM FOR STRUCTURAL NONLINEAR DYNAMIC ANALYSIS[J].. Mechanics in Engineering, 2010, 32(3): 96-100.
[7] Wu, B., Pan, T., Yang, H., Xie, J., Spencer, B.F. (2020). Energy-consistent integration method and its application to hybrid testing[J]. Earthquake Engineering & Structural Dynamics, 2020(49): 415-433.
[8] Ogata K. Discrete-time control systems. New Jersey[M]: Prentice Hall, 1995.
[9] Chen C, Ricles J M. Stability analysis of direct integration algorithms applied to nonlinear structural dynamics[J]. Journal of Engineering Mechanics, 2008, 134: 703-711.
[10] Christopoulos C, Filiatrauh A. Principles of passive supplemental damping and seismic isolation[M]. Italy:IUSS Press, 2006.
[11] 黄宙,李宏男,付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学,2019, 36(6): 202-210.
Huang Zhou, Li Hongnan, Fu Xing. OPTIMUM DESIGN OF A RE-CENTERING DEFORMATION-AMPLIFIED SMA DAMPER[J]. Engineering Mechanics, 2019, 36(6): 202-210.
[12] 朱旭东,吕西林,徐崇恩. 软钢阻尼器基于Bouc-Wen模型的参数识别研究[J]. 结构工程师,2011, 27(5): 124-128.
Zhu Xudong, Lu Xilin, Xu Chongen. Parametric Identification of Mild Steel Damper Based on Bouc-Wen Model[J]. Structural Engineers, 2011, 27(5): 124-128.
[13] 潘超,张瑞甫,罗浩等. 金属阻尼器消能减震体系的等阻尼比设计方法[J]. 建筑结构学报, 2018, 39(3): 39-47.
Pan Chao, Zhang Ruifu, Luo Hao, et al. Constant damping ratio design method for damping controlled structures with metallic yielding dampers[J]. Journal of Building Structures, 2018, 39(3): 39-47.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}