基于雷达振动测试技术的时变索力识别方法研究

王天鹏1,2,张建仁2,蒋淑霞3,刘文3,陈溢广1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 205-212.

PDF(2793 KB)
PDF(2793 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 205-212.
论文

基于雷达振动测试技术的时变索力识别方法研究

  • 王天鹏1,2,张建仁2,蒋淑霞3,刘文3,陈溢广1
作者信息 +

Time-varying cable force identification method based on radar vibration measurement technique

  • WANG Tianpeng1,2, ZHANG Jianren2, JIANG Shuxia3, LIU Wen3, CHEN Yiguang1
Author information +
文章历史 +

摘要

根据振动频率法索力测试原理,提出了基于连续复小波变换的分时段等值线法进行时变索力识别。将拉索的振动信号划分为多个较小的分析时段,对每个分析时段信号进行连续复Morlet小波变换得到小波系数,采用改进后的小波阈值去噪函数对小波系数进行降噪处理。通过等值线法在等幅值面上提取小波脊带,利用最邻近法对等值线进行拟合插值。然后把插值在频域进行均值化处理,识别出拉索的瞬时频率,进而计算出时变索力。以微波雷达为测试手段,设计了时变索力识别试验,试验结果表明:本文方法能够提取到振动信号连续的瞬时频率,无论是索力呈线性变化还是正弦变化,均能准确的识别出索力变化规律,索力识别结果和实际索力误差最大仅为3.8%,且在信噪比较低的情况下仍表现出了较好的适用性。实桥应用结果表明,雷达测试手段结合本文的时变索力识别方法,可以便捷、有效的获取拉索的索力时程。

Abstract

According to the principle of vibration frequency force measurement, a time-varying cable force identification method based on continuous complex wavelet transform is proposed. The vibration signal of the cable is divided into several smaller analysis periods. The continuous complex Morlet wavelet transform is performed on the signal in each analysis period to obtain the wavelet coefficients. The improved wavelet threshold denoising function is used to denoise the wavelet coefficients. The wavelet ridge is extracted on the equal amplitude surface by isoline method, and the nearest neighbor method is used for fitting and interpolation. Then the interpolation is averaged in the frequency domain to identify the instantaneous frequency of the cable, and then the time-varying cable force is calculated. Taking microwave radar as the test means, a time-varying cable force identification test is designed. The test results show that this method can extract the continuous instantaneous frequency of vibration signal. Whether the cable force changes linearly or sinusoidally, it can accurately identify the change law of cable force. The maximum error between the cable force identification result and the actual cable force is only 3.8%, And it still shows good applicability in the case of low signal-to-noise ratio. The application results of real bridge show that the radar test method combined with the time-varying cable force identification method in this paper can obtain the cable force time history conveniently and effectively.

关键词

桥梁工程 / 时变索力 / 瞬时频率 / 微波雷达 / 阈值去噪 / 小波脊

Key words

bridge engineering / time-varying cable force / instantaneous frequency / microwave radar / Threshold denoising / wavelet ridge

引用本文

导出引用
王天鹏1,2,张建仁2,蒋淑霞3,刘文3,陈溢广1. 基于雷达振动测试技术的时变索力识别方法研究[J]. 振动与冲击, 2023, 42(9): 205-212
WANG Tianpeng1,2, ZHANG Jianren2, JIANG Shuxia3, LIU Wen3, CHEN Yiguang1. Time-varying cable force identification method based on radar vibration measurement technique[J]. Journal of Vibration and Shock, 2023, 42(9): 205-212

参考文献

[1] GEIER R, DEROECK G, Flesch R. Accurate cable force determination using ambient vibration measurements[J]. Structure and Infrastructure Engineering, 2006, 2(1): 43-52.
[2] 李惠,鲍跃全,李顺龙等.结构健康监测数据科学与工程[M].北京:科学出版社,2016.
[3] 王超,任伟新,黄天立.基于复小波变换的结构瞬时频率识别[J].振动工程学报,2009,22(05):492-496.
WANG Chao,REN Weixin,HUANG Tianli. Instantaneous frequency identification of a structure based on complex wavelet transform[J].Journal of Vibration Engineering, 2009,22(05):492-496.
[4] WANG C, REN W X, Wang Z C, et al. Instantaneous frequency identification of time-varying structures by continuous wavelet transform[J]. Engineering Structures, 2013, 52: 17-25.
[5] 刘景良,郑锦仰,林友勤,等.变分模态分解和同步挤压小波变换识别时变结构瞬时频率[J].振动与冲击,2018,37(20):24-31.
LIU Jingliang, ZHENG Jinyang, LIN Youqin, et al. Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchrosqueezing wavelet transform[J]. Journal of Vibration and Shock,2018,37(20):24-31.
[6] LIU J L, ZHENG J Y, WEI X J, et al. A combined method for instantaneous frequency identification in low frequency structures[J].Engineering Structures,2019,194: 370-383.
[7] LI H, ZHANG F J, JIN Y Z. Real-time identification of time-varying tension in stay cables by monitoring cable transversal acceleration[J]. Structural Control and Health Monitoring, 2014, 21(7): 1100-1117.
[8] YANG Y, LI S, NAGARAJAIAH S, et al. Real-time output-only identification of time-varying cable tension from accelerations via complexity pursuit[J]. Journal of Structural Engineering, 2016, 142(1): 04015083.1-10.
[9] BAO Y Q, SHI Z Q, BECK J L, et al. Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations[J]. Structural Control and Health Monitoring, 2017, 24(3): 1-17.
[10] HOU S T, DONG B, FAN J H, et al. Variational Mode Decomposition Based Time-Varying Force Identification of Stay Cables[J]. Applied Sciences, 2021, 11(3): 1254.1-17.
[11] GENTILE C. Vibration measurement by radar techniques[C]//8th International Conference on Structural Dynamics, EURODYN 2011. 2011: 92-103.
[12] ZHAO W J, ZHANG G W, ZHANG J. Cable force estimation of a long-span cable‐stayed bridge with microwave interferometric radar[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(12): 1419-1433.
[13] LIU Y, XIE J Z, TAFSIROJJAMAN T, et al. CFRP lamella stay-cable and its force measurement based on microwave radar[J]. Case Studies in Construction Materials,2022,16: 1-17.
[14] CAMASSA D, CASTELLANO A, FRADDOSIO A, et al. Dynamic Identification of Tensile Force in Tie-Rods by Interferometric Radar Measurements[J]. Applied Sciences, 2021, 11(8): 1-18.
[15] VANDERPOL B. The fundamental principles of frequency modulation[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93(23): 153-158.
[16] COHEN L. Time-frequency analysis[M]. Englewood Cliffs, NJ Prentice Hall PTR, 1995.
[17] DELPRAT N, ESCUDIÉ B, GUILLEMAIN P, et al. Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[J]. IEEE transactions on Information Theory, 1992, 38(2): 644-664.
[18] DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. biometrika, 1994, 81(3): 425-455.
[19] 金宝龙,李辉,赵乃杰,等.一种新的小波阈值去噪算法[J].弹箭与制导学报,2011,31(01):167-169+176.
JIN Baolong, LI Hui, ZHAO Naijie,et al. A De-nosing Algorithm of Wavelet Threshold Based on a New Threshold Function[J].Journal of Projectiles,Rockets,Missiles and Guidance, 2011,31(01):167-169+176.
[20] SHIMADA T, KIMOTO K, NARUI S. Study on estimating tension of tied hanger ropes of suspension bridge by vibration method[J]. Doboku Gakkai Ronbunshu, 1989, 1989(404): 455-458.
[21] REN W X, CHEN G, HU W H. Empirical formulas to estimate cable tension by cable fundamental frequency[J]. Structural Engineering and Mechanics,2005,20(3): 363-380.

PDF(2793 KB)

Accesses

Citation

Detail

段落导航
相关文章

/