基于数字孪生的裂纹扩展结构健康管理方法研究

常琦,陈乐乐,赵恒,谢方勤,高鹤明

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 253-260.

PDF(2512 KB)
PDF(2512 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 253-260.
论文

基于数字孪生的裂纹扩展结构健康管理方法研究

  • 常琦,陈乐乐,赵恒,谢方勤,高鹤明
作者信息 +

Health management method of crack propagation structures based on digital twin

  • CHANG Qi,  CHEN Lele, ZHAO Heng, XIE Fangqin, GAO Heming
Author information +
文章历史 +

摘要

疲劳裂纹是金属结构常见的损伤之一,提出了一种构建数字孪生模型对裂纹扩展结构进行健康管理的方法。在数字孪生模型的建立过程中,首先建立裂纹结构的有限元模型,并结合Paris公式构建裂纹扩展模型;其次基于动态贝叶斯网络表示裂纹状态随时间演化的规律;最后采用粒子滤波算法作为模型的推理算法,从而在数字空间中完成对裂纹扩展行为的描述。通过应变传感器实时在线监测裂纹状态,驱动孪生模型动态更新,实现裂纹扩展状态和剩余使用寿命更准确的预测。通过实验验证了该方法在裂纹扩展结构健康管理上的有效性与实用性。

Abstract

Fatigue cracks are one of the common damages of metal structures. A method of constructing a digital twin model to manage the health of crack propagation structures is proposed. In the process of establishing the digital twin model, the finite element model of the crack structure is first established, and the crack propagation model is established by combining the Paris formula; Secondly, based on the Dynamic Bayesian Network, the law of crack state evolution with time is represented; Finally, the particle filter algorithm is used as the inference algorithm of the model, so as to complete the description of the crack propagation behavior in digital space. The crack state is monitored online in real time through the strain sensor, which drives the dynamic update of the twin model to achieve a more accurate prediction of the crack propagation state and remaining useful life. The effectiveness and practicability of this method in structural health management of crack propagation are verified by experiments.

关键词

数字孪生 / 疲劳裂纹扩展 / 健康管理 / 动态贝叶斯网络 / 粒子滤波算法

Key words

digital twin / fatigue crack propagation / health management / Dynamic Bayesian Network / particle filter algorithm

引用本文

导出引用
常琦,陈乐乐,赵恒,谢方勤,高鹤明. 基于数字孪生的裂纹扩展结构健康管理方法研究[J]. 振动与冲击, 2023, 42(9): 253-260
CHANG Qi, CHEN Lele, ZHAO Heng, XIE Fangqin, GAO Heming. Health management method of crack propagation structures based on digital twin[J]. Journal of Vibration and Shock, 2023, 42(9): 253-260

参考文献

[1] 王泓晖,房鑫,李德江,等. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J].浙江大学学报(工学版),2021,55(02):280-288.
WANG Hong-hui, FANG Xin, LI De-jiang, et al. Prediction method of fatigue crack growth under variable amplitude load based on dynamic Bayesian network [J]. Journal of Zhejiang University (Engineering Science), 2021,55(02):280-288.
[2] Angulo Á, Allwright J, Mares C, et al. Finite Element Analysis of Crack Growth for Structural Health Monitoring of Mooring Chains using Ultrasonic Guided Waves and Acoustic Emission[J]. Procedia Structural Integrity, 2017,5, 217–224.
[3] 景博, 汤巍,黄以锋,等.故障预测与健康管理系统相关标准综述[J].电子测量与仪器学报,2014,28(12):1301-1307.
JING Bo, TANG Wei, HUANG Yi-feng, et al. A review of relevant standards for fault prediction and health management systems[J]. Journal of Electronic Measurement and Instrumentation,2014,28(12):1301-1307.
[4] 陈健,袁慎芳,王卉,等.基于高斯权值-混合建议分布粒子滤波的疲劳裂纹扩展预测[J].航空学报,2017,38(11):168-176.
CHEN Jian, YUAN Shen-fang, WANG Hui, et al. Prediction of Fatigue Crack Propagation Based on Gaussian Weight-Hybrid Recommendation Distribution Particle Filter[J]. Journal of Aeronautics and Astronautics, 2017,38(11):168-176.
[5] Tao F, Cheng J F, Qi Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. Springer London,2018,94(9).
[6] Batty, Michael. Digital twins[J]. Environment and Planning B: Urban Analytics and City Science, 2018,45(5), 817–820.
[7] Laaki H, Miche Y, Tammi K. (2019). Prototyping a Digital Twin for Real Time Remote Control Over Mobile Networks: Application of Remote Surgery[J]. IEEE Access, 7, 20325–20336.
[8] Wang Y J, Xu R L, Zhou C J, et al. Digital twin and cloud-side-end collaboration for intelligent battery management system[J]. Journal of Manufacturing Systems, 2022, 62.
[9] LIU Qiang, ZHANG Hao, LENG Jie-wu, et al. Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system[J]. International Journal of Production Research, 2018, 1–17.
[10] Jiang F, Ding Y, Song Y, et al. Digital Twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen. Engineering Structures, 2021, 241, 112461.
[11] Li C, Mahadevan S, Ling Y, et al. Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin[J]. AIAA Journal, 2017,55(3), 930–941.
[12] YE Yu-mei, YANG Qiang, YANG Fan, et al. Digital Twin for the Structural Health Management of Reusable Spacecraft: A Case Study[J]. Engineering Fracture Mechanics,2020, 234, 107076.
[13] 刘大同,郭凯,王本宽,等.数字孪生技术综述与展望[J].仪器仪表学报,2018,39(11):1-10.
LIU Da-tong, GUO Kai, WANG Ben-kuan, et al. Review and Prospect of Digital Twin Technology [J]. Journal of Instrumentation, 2018, 39(11): 1-10.
[14] Chapetti M D,  Steimbreger C . A simple fracture mechanics estimation of the fatigue endurance of welded joints[J]. International Journal of Fatigue, 2019, 125(AUG.):23-34.
[15] 马一江,陈国平.不同温度下裂纹悬臂梁的模态和疲劳寿命分析[J].振动与冲击,2017,36(08):132-137+163.
        MA Yi-jiang, CHEN Guo-ping. Modal and fatigue life analysis of a cracked cantilever beam under different temperatures[J]. Journal of Vibration and Shock, 2017,36(08):132-137+163.
[16] Masoudi Nejad R, Shariati M, Farhangdoost K. Prediction of fatigue crack propagation and fractography of rail steel[J]. Theoretical and Applied Fracture Mechanics, 2019,101, 320–331.
[17] 刘文光,陈国平.含裂纹悬臂梁的振动与疲劳耦合分析[J].振动与冲击,2011,30(05):140-144.
LIU Wen-guang, CHEN Guo-ping. Coupling analysis for vibration and fatigue of a cracked cantilever beam. Journal of Vibration and Shock, 2011,30(05):140-144.
[18] Bartram, G, Mahadevan S. Integration of heterogeneous information in SHM models[J]. Structural Control and Health Monitoring, 2013,21(3), 403–422.
[19] 孙磊,贾云献,蔡丽影,等.粒子滤波参数估计方法在齿轮箱剩余寿命预测中的应用研究[J].振动与冲击,2013,32(06):6-12+23.
SUN Lei, JIA Yun-xian, CAI Li-ying, et al. Residual useful life prediction of gearbox based on particle filtering parameter estimation method[J]. Journal of Vibration and Shock, 2013,32(06):6-12+23.
[20] 宋悦,时祎瑜,于劲松,等. 基于数字孪生的光电探测系统性能预测[J].计算机集成制造系统,2019,25(06).
SONG Yue, SHI Yi-Yu, YU Jing-song, et al. Application of digital twin model in performance prediction of electro-optical detection system[J]. Computer Integrated Manufacturing Systems. 2019,25(06).

PDF(2512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/