爆炸荷载作用下RC梁-板子结构抗连续倒塌动力效应研究

李治1,2,原小兰2,董腾方2,黄茜3,邓小芳1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 27-35.

PDF(4686 KB)
PDF(4686 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 27-35.
论文

爆炸荷载作用下RC梁-板子结构抗连续倒塌动力效应研究

  • 李治1,2,原小兰2,董腾方2,黄茜3,邓小芳1,2
作者信息 +

Anti-progressive collapse dynamic effect of RC beam-slab substructure under blast load

  • LI Zhi1,2, YUAN Xiaolan2, DONG Tengfang2, HUANG Xi3,DENG Xiaofang1,2
Author information +
文章历史 +

摘要

为研究爆炸荷载作用下建筑结构的抗连续倒塌性能。本文通过ANSYS/LS-DYNA有限元软件对爆炸荷载作用下钢筋混凝土(reinforced concrete,RC)梁-板子结构的抗连续倒塌动力效应进行研究,并对混凝土强度、钢筋配筋率和跨高比等参数进行拓展分析。研究结果表明:通过瞬间去柱模拟爆炸去柱会造成结构残余承载力和结构局部损伤程度偏于保守或者偏高的后果。混凝土强度对结构的动力效应影响显著,当混凝土强度大于C40时,结构的压膜及压拱机制已足够阻止连续倒塌的发生。配筋率的提高对压拱机制抗力影响不大,但能显著提高悬链线机制的抗力。跨高比对结构抗力机制的发展有着显著的影响,降低跨高比可以提高结构压拱和压膜机制抗力,但是对悬链线机制抗力影响不大。

Abstract

In order to study the progressive collapse resistance of building structure under blast load. In this paper, ANSYS/LS-DYNA finite element software is used to study the dynamic response of reinforced concrete (RC) beam-slab substructure resistance progressive collapse under blast load, and the concrete strength, reinforcement ratio and span ratio are extended and analyzed. The results show that transient column removal can lead to conservative or high degree structural residual capacity and damage. The concrete strength has a significant effect on the dynamic response of structure. When the concrete strength is greater than C40, the compressive menbrane action and arch mechanism of the structure are enough to resist collapse. The increase of reinforcement ratio has little effect on the resistance of arch action, but can significantly improve the resistance of catenary action. The span height ratio has a significant influence on the development of structural resistance mechanism. The reduction of span height ratio can improve the resistance of arch action and compressive menbrane action, but has little influence on the catenary action resistance.

关键词

钢筋混凝土(RC)梁-板子结构 / 爆炸荷载 / 动力效应 / 有限元分析 / 连续倒塌

Key words

reinforced concrete beam-plate substructure / Blast load / Dynamic response / finite element analysis / Progressive collapse

引用本文

导出引用
李治1,2,原小兰2,董腾方2,黄茜3,邓小芳1,2. 爆炸荷载作用下RC梁-板子结构抗连续倒塌动力效应研究[J]. 振动与冲击, 2023, 42(9): 27-35
LI Zhi1,2, YUAN Xiaolan2, DONG Tengfang2, HUANG Xi3,DENG Xiaofang1,2. Anti-progressive collapse dynamic effect of RC beam-slab substructure under blast load[J]. Journal of Vibration and Shock, 2023, 42(9): 27-35

参考文献

[1] ASCE 7. American society of civil engineers standard 7 minimum design loads for buildings and other structures[S]. American Society of Civil Engineers, 2010.
[2] 翁运昊, 李治, 邓小芳, 等. 钢支撑加固RC框架抗连续倒塌试验与数值模拟研究[J]. 振动与冲击, 2022, 41(5): 173-181. (Weng Y H, Li Z, Deng X F, et al. Tests and numerical simulation for anti-progressive collapse of RC frame reinforced with steel braces[J]. Journal of Vibration and Shock, 2022, 41(5): 173-181. (in Chinese))
[3] 乔惠云, 杨应华, 钟炜辉. 中柱失效下多层框架的连续性倒塌分析与机理研究[J]. 振动与冲击, 2018, 37(22): 136-143. (Qiao H Y, Yang Y H, Zhong W H. Progressive collapse analysis and mechanism study for multi-story frame structures with middle-column demolition[J]. Journal of Vibration and Shock, 2018, 37(22): 136-143. (in Chinese))
[4] Qian K, Geng S Y, Liang S L, et al. Effects of loading regimes on the structural behavior of RC beam-column sub-assemblages against disproportionate collapse[J]. Engineering Structures, 2022, 251: 113470.
[5] Weng Y H, Qian K, Fu F, et al. Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse[J]. Journal of Building Engineering, 2020, 29: 101109.
[6] 谭政, 钟炜辉, 段仕超, 等. 不同梁线刚度情形下组合梁柱子结构抗倒塌性能研究[J]. 振动与冲击, 2021, 40(10): 57-66. (Tan Z, Zhong W H, Duan S C, et al. Research on anti-collapse performance of composite beam-column substructures with different beam line stiffness[J]. Journal of Vibration and Shock, 2021, 40(10): 57-66. (in Chinese))
[7] 杨涛, 陈万庆, 郝天之. 中柱失效后预应力混凝土框架子结构动力倒塌性能试验研究[J]. 振动与冲击, 2020, 39(20): 17-23. (Yang T, Chen W Q, Hao T Z, Experimental study on dynamic collapse performance of prestressed RC frame substructures after middle column demolition frame substructures[J]. Journal of Vibration and Shock, 2020, 39(20): 17-23. (in Chinese))
[8] 乔惠云, 郭壮壮, 陈誉, 等. 平面钢框架在撞击荷载作用下的抗连续倒塌分析[J]. 振动与冲击, 2022, 41(4): 176-184. (Qian H Y, Guo Z Z, Chen Y, et al. Anti-progressive collapse analysis for plane steel frame under impact load[J]. Journal of Vibration and Shock, 2022, 41(4): 176-184. (in Chinese))
[9] Xie F Z, Gu B, Qian H. Experimental study on the dynamic behavior of steel frames during progressive collapse[J]. Journal of Constructional Steel Research, 2021, 177: 106459.
[10] Zhao Z D, Liu Y L, Li Y, et al. Experimental and numerical investigation of dynamic progressive collapse of reinforced concrete beam-column assemblies under a middle-column removal scenario[J]. Structures, 2011, 38: 979-992.
[11] 刘晶波, 刘阳冰, 杨建国, 等. 国家地震紧急救援训练基地地震废墟结构设计与爆炸成型研究[J]. 振动与冲击, 2009, 28(9): 116-119+218. (Liu J B, Liu Y B, Yang J G, et al. Design and blasting formation study for one earthquake ruins structure of a national training base of emergency seismic rescue troops[J]. Journal of Vibration and Shock, 2009, 28(9): 116-119+218. (in Chinese))
[12] 高轩能, 刘颖, 杨维英. 马场坪收费站汽车爆炸破坏的数值模拟分析[J]. 振动与冲击, 2012, 31(21): 184-189. (Gao X N, Liu Y, Yang W Y. Numerical simulation for damage of Ma Chang Ping highway toll station under lorry- blasting[J]. Journal of Vibration and Shock, 2012, 31(21): 184-189. (in Chinese))
[13] 闫秋实, 杜修力. 典型地铁车站柱在爆炸荷载作用下损伤评估方法研究[J]. 振动与冲击, 2017, 36(1): 1-7. (Yab Q S, Du X L. Damage evaluation for a column of a typical subway station subjected to internal blast loading[J]. Journal of Vibration and Shock, 2017, 36(1): 1-7. (in Chinese))
[14] Jayasooriya R, Thambiratnam D P, Perera N J, et al. Blast and residual capacity analysis of reinforced concrete framed buildings[J]. Engineering Structures, 2011, 33(12): 3483-3495.
[15] Li B, Nair A, Qian K. Residual axial capacity of reinforced concrete columns with simulated blast damage[J]. Journal of Performance of Constructed Facilities, 2012, 26(3): 287-296.
[16] 师燕超, 李忠献, 郝洪. 爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J]. 解放军理工大学学报, 2007, (6): 652-658. (Shi Y C, Li Z X, Hao H. Numerical analysis of progressive collapse of reinforced concrete frame under blast loading[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, (6): 652-658. (in Chinese))
[17] 黄真伟. 爆炸荷载作用下钢筋混凝土框架结构连续倒塌的数值模拟[D]. 天津: 天津大学, 2007. (Huang Z W. Numerical simulation of progressive collapse of reinforced concrete frame structures under blast loading[D]. Tianjin: Tianjin university, 2007. (in Chinese))
[18] 扈鹏. 框架结构在爆炸冲击荷载下的动力响应及连续倒塌分析研究[D]. 西安: 长安大学, 2008. (Hu P. Dynamic response and progressive collapse of reinforced concrete frame to explosive and impact loads[D]. Xi 'an: Chang 'an university, 2008. (in Chinese))
[19] 言志信, 刘龙泉, 刘培林, 等. 框架结构爆破拆除分离式模拟研究爆破[J], 爆破, 2011, 28(3): 1-3+33. (Yan Z X, Liu L Q. Liu P L, et al. Simulation research on separate model of framed structure explosive demolition[J]. Blasting, 2011, 28(3): 1-3+33. (in Chinese))
[20] Qian K, Li B. Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column[J]. Engineering Structures, 2017, 148: 175-184.
[21] ACI Committee 318. Building code requirements for structural concrete and commentary[S]. Farmington Hills, MI: American Concrete Institute, 2008.
[22] Department of Defense (DOD). Design of buildings to resist progressive collapse[S]. Washington DC, 2013.
[23] Wu K C, Li B, Tsai KC. Residual axial compression capacity of localized blast-damaged RC columns[J]. International Journal of Impact Engineering, 2011, 38(1): 29-40.
[24] Bischoff P H, Perry S H. Compressive behavior of concrete at high stain rate[J]. Materials and Structures, 1991, 24(144): 425-450.
[25] Ross T J, Krawinkler H. Impulsive direct shear failure in RC slabs[J]. Journal of Structural Engineering, 1985, 111(8): 1661-1677.
[26] Lee E L, Hornig H C, Kury J W. Adiabatic expansion of high explosive detonation products[J]. UCRL-50422, Lawrence Radiation Laboratory, University of California, 1968.
[27] Izzuddin B, Vlassis A, Elghazouli A, et al. Progressive collapse of multi storey buildings due to sudden column loss-Part I: Simplified assessment framework[J]. Steel Construction, 2008, 30: 1308-1318.
[28] GB 50011-2010: 建筑抗震设计规范 [S]. 北京:中国建筑工业出版社, 2016. (GB 50011-2010: Code for seismic design of buildings [S]. Beijing:China Architecture &- Building Press,2016. (in Chinese))
[29] JGJ 3-2010: 高层建筑混凝土结构技术规程 [S]. 北京:中国建筑工业出版社, 2010.(JGJ 3-2010: Technical specification for concrete structures of tall building[S]. Beijing: China Architecture &-Building Press, 2010.(in Chinese)

PDF(4686 KB)

Accesses

Citation

Detail

段落导航
相关文章

/