基于可变刚度抗蛇行减振器的车辆动力学性能研究

霍文彪1,2,刘学刚2,李辰生2,刘志强1,邬平波1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 95-105.

PDF(4773 KB)
PDF(4773 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (9) : 95-105.
论文

基于可变刚度抗蛇行减振器的车辆动力学性能研究

  • 霍文彪1,2,刘学刚2,李辰生2,刘志强1,邬平波1
作者信息 +

Vehicle dynamic performance based on variable stiffness yaw damper

  • HUO Wenbiao1,2, LIU Xuegang2, LI Chensheng2, LIU Zhiqiang1,WU Pingbo1
Author information +
文章历史 +

摘要

CRH3系列高速动车组在长期服役过程中偶有发生蛇行运动稳定性裕量不足的问题,车辆装配T60型抗蛇行减振器,在车轮磨耗末期易发生构架横向加速度报警问题,装配T70型抗蛇行减振器,则在新轮或车轮磨耗初期易发生“晃车”的问题。本文针对晃车和报警问题开展可变刚度抗蛇行减振器的仿真与试验研究,以满足车辆在不同轮轨接触状态下车辆的蛇行运动稳定性需求。动力学仿真表明,可变刚度抗蛇行减振器能有效兼顾解决“晃车”和“报警”问题;进一步分析可变刚度抗蛇行减振器与两种高速踏面的适应性,采用S1002CN踏面时车辆临界速度高于350km/h,而采用LMB10踏面时仅为220km/h,且S1002CN踏面对应的平稳性和舒适度指标都优于LMB10踏面。最后通过整车滚振台架试验对变刚度抗蛇行减振器性能进行了试验验证,结果表明该减振器可以兼顾轮轨低锥度和高锥度匹配状态,可使车辆均具有良好的动力学性能。

Abstract

During the long-term service of CRH3 series high-speed EMUs, the problem of insufficient stability margin for hunting motion occasionally occurs, the vehicle is equipped with T60 yaw damper, and the frame lateral acceleration alarm problem is prone to occur at the worn wheel state. When the vehicle is equipped with T70 yaw damper, the ‘carbody hunting’ issue is easy to occur in the early stage of wheel wear or new wheels. In this paper, the simulation and experimental research of frequency selected stiffness yaw damper was carried out for the problem of carbody hunting and frame alarm, so as to meet the needs of the vehicle's hunting motion stability under different wheel-rail contact states.Dynamic simulation shows that the frequency selected stiffness yaw damper can effectively solve the problems of ‘carbody hunting’ and ‘frame alarm’. The adaptability of the frequency selected stiffness yaw damper and two high-speed treads was further analyzed, and the vehicle critical speed is higher than 350km/h when the S1002CN is used, the LMB10 tread is only 220km/h, and the stability and comfort index corresponding to the S1002CN are better than those of the LMB10. Finally, the performance of the frequency selected stiffness yaw damper is verified by the rolling vibration bench test of the whole vehicle, the results show that the frequency selected stiffness yaw damper has good dynamic performance under the wheel-rail matching conditions of low equivalent conicity, normal equivalent conicity and equivalent conicity.

关键词

高速列车 / 抗蛇行减振器 / 变刚度 / 晃车 / 失稳报警 / 动态刚度 / 动态阻尼

Key words

High-speed train / yaw damper / frequency selected stiffness / carbody hunting / bogie hunting / dynamic stiffness / dynamic damping

引用本文

导出引用
霍文彪1,2,刘学刚2,李辰生2,刘志强1,邬平波1. 基于可变刚度抗蛇行减振器的车辆动力学性能研究[J]. 振动与冲击, 2023, 42(9): 95-105
HUO Wenbiao1,2, LIU Xuegang2, LI Chensheng2, LIU Zhiqiang1,WU Pingbo1. Vehicle dynamic performance based on variable stiffness yaw damper[J]. Journal of Vibration and Shock, 2023, 42(9): 95-105

参考文献

[1] 罗仁, 石怀龙. 高速列车系统动力学[M]. 成都: 西南交通大学出版社, 2019.
LUO Ren, SHI Huailong. Dynamics of high-speed railway vehicle system[M]. Chengdu: Southwest Jiaotong University Press, 2019.
[2] 孟素英. 高速列车蛇行运动半主动控制研究[D]. 成都: 西南交通大学, 2018.
MENG Suying. Research on semi-active control of hunting movement in high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2018.
[3] HUANG C H, ZENG J. Dynamic behavior of a high-speed train hydraulic yaw damper[J]. Vehicle System Dynamics, 2018, 56(12): 1922-1944.
[4] 明星宇. 抗蛇行减振器动态参数对动车组动力学性能影响研究[D]. 成都: 西南交通大学, 2016.
MING Xingyu. The research on the influence of active parametres of yaw damper on EMU dynamic ability[D]. Chengdu: Southwest Jiaotong University, 2016.
[5] 吴会超, 霍文彪, 卢权, 等. 不同抗蛇行减振器对动车组蛇行失稳的影响研究[J]. 机车电传动, 2017(05): 30-34.
WU Huichao, HUO Wenbiao, LU Quan, et al. Influence study of different anti-yaw dampers on EMUs hunting instability[J]. Electric Drive for Locomotives, 2017(05): 30-34.
[6] 金天贺, 刘志明, 任尊松, 等. 高速列车半主动悬挂可变刚度和阻尼减振器适应性研究[J]. 振动工程学报, 2020, 33(4):772-783.
JIN Tianhe, LIU Zhiming, REN Zunsong, et al. Adaptability of variable stiffness and damping shock absorber for semi-active suspension of high-speed train[J]. Journal of Vibration Engineering, 2020, 33(4): 772-783.
[7] Wang W L, Yu D S, Huang Y, et al. A locomotive’s dynamic response to in-service parameter variations of its hydraulic yaw damper[J]. Nonliner Dynamic, 2014, 77(10):1485-1502.
[8] 秦震, 周素霞, 孙晨龙, 等. 减振器特性参数对高速动车组临界速度的影响研究[J]. 机械工程学报, 2017, 53(06):138-144.
QIN Zhen, ZHOU Suxia, SUN Chenlong, et al. Influence of hydraulic shock absorber characteristic parameters on the critical speed of high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(06):138-144.
[9] 白瑾瑜, 曾京, 石怀龙, 等. 抗蛇行减振器对高速列车稳定性的影响[J]. 振动与冲击, 2020, 39(23):78-83.
BAI Jinyu, ZENG Jing, SHI Huailong, et al. Effects of anti-hunting shock absorber on stability of high-speed train[J]. Journal of Vibration and Shock, 2020, 39(23):78-83.
[10] Mousavi B S M, Berbyuk V. Multi objective optimization of bogie suspension to boost speed on curves[J]. Vehicle System Dynamics, 2016, 54(1):1-27.
[11] 曾京, 邬平波. 减振器橡胶节点刚度对铁道客车系统临界速度的影响[J]. 中国铁道科学, 2008, 29(2):94-98.
ZENG Jing, WU Pingbo. Influence of rubber joint stiffness of shock absorber on critical speed of railway passenger car system[J]. China Railway Science, 2008, 29(2):94-98.
[12] Guo J, Shi H, Luo R, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel -rail contact. Nonlinear Dynamics, 2021, 104(2): 989 -1005.
[13] AHMADIAN M, YANG S P. Effect of system nonlineari-ties on locomotive bogie hunting stability[J]. Vehicle System Dynamics, 1998, 29(6):365-384.
[14] Teng W, Shi H, Luo R, et al. Improved nonlinear model of a yaw damper for simulating the dynamics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7):651-655.
[15] Shi H, Wang J, Wu P, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains. Vehicle System Dynamics, 2018, 56(8), 1187-1206.
[16] 黄彩虹, 梁树林, 宋春元, 等. 高速车辆车体低频横向晃动的影响因素研究[J]. 机车电传动, 2014, (01):16-20.
HUANG Caihong, LIANG Shulin, SONG Chunyuan, et al. Study on influence factors of low-frequency carbody swaying for high-speed vehicles[J]. Electric Drive for Locomotives, 2014, (01):16-20.
[17] 王晨, 罗世辉, 许自强, 等. 高速动车组构架横向失稳问题仿真分析与试验验证[J]. 铁道学报, 2021, 43(01):39-48.
WANG Chen, LUO Shihui, XU Ziqiang, et al. Simulation analysis and field test verification of lateral instability of high-speed EMU framework[J]. Journal of the China Railway Society, 2021, 43(01):39-48.
[18] 周清跃, 田常海, 张银花, 等. CRH3型动车组构架横向失稳成因分析[J]. 中国铁道科学, 2014, 35(06):105-110.
ZHOU Qingyue, TIAN Changhai, ZHANG Yinhua, et al. Cause Analysis for the lateral instability of CRH3 EMU framework[J]. China Railway Science, 2014, 35(06):105-110.
[19] 王蔚, 吴兴文, 周橙, 等. 基于小生境遗传算法的高速动车组稳定性优化与灵敏度分析[J]. 铁道学报, 2021, 43(07):26-33.
WANG Wei, WU Xingwen, ZHOU Cheng, et al. Investigation on stability optimization and parameter se-nsitivity analysis of high-speed train using Niche Genetic Algorithm[J]. Journal of the China Railway Society, 2021, 43(07):26-33.
[20] 姚远, 程俊, 张名扬, 等. 高速车辆车体低频横向晃动的影响因素研究[J]. 振动工程学报:1-10[2021-11-19]. http://kns.cnki.net/kcms/detail/32.13.T
B.20210929.1639.002.HTML.
YAO Yuan, CHENG Jun, ZHANG Mingyang, et al. Mec-hanism analysis of yaw damper in high-speed train and frequency dependent stiffness application[J]. Journal of Vibration Engineering:1-10[2021-11-19].http://kns.cnki.
Net/kcms/detail/32.13.TB.20210929.1639.002.HTML.
[21] 何远, 王勇. 抗蛇行减振器串联刚度对高速动车组运行稳定性的影响[J], 机车电传动, 2015, (3):26-29.
HE Yuan, WANG Yong. Influence of anti-yaw damper series stiffness on running stability of high-speed EMUs[J]. Electric Drive for Locomotives, 2015, (03):26-29.
[22] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1):36-58.
SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1):36-58.

PDF(4773 KB)

Accesses

Citation

Detail

段落导航
相关文章

/