移动荷载作用下悬浮隧道管体TMD减振分析及优化布置

杨赢1, 金利成1, 项贻强2, 何余良1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 165-171.

PDF(1488 KB)
PDF(1488 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 165-171.
论文

移动荷载作用下悬浮隧道管体TMD减振分析及优化布置

  • 杨赢1, 金利成1, 项贻强2, 何余良1
作者信息 +

TMD Vibration reduction analysis and optimal layout for submerged floating tunnel tube under moving load

  • YANG Ying1, JIN Licheng2, XIANG Yiqiang2, HE Yuliang1
Author information +
文章历史 +

摘要

为减小悬浮隧道管体在移动荷载作用下的动力响应,采用TMD作为振动控制措施并对减振效果进行了分析。将悬浮隧道管体简化为弹性地基梁,采用移动简谐力模拟汽车荷载,通过Morison方程计算管体振动过程中的流体附加惯性效应和阻尼效应,推导建立了移动荷载作用下管体-TMD系统振动控制方程组。采用Newmark-β法进行数值求解,分析了TMD对悬浮隧道管体的减振效果。针对悬浮隧道管体振动特征,提出采用分布式TMD的布置形式,并对移动速度、TMD阻尼比的影响进行了讨论。结论表明:TMD对移动简谐荷载作用下的悬浮隧道管体具有显著减振效果,最大位移减振率在50%以上。由于多阶模态参与振动,单一TMD的有效减振范围有限。在保持总质量不变的情况下,采用分布式TMD可以获得较好的整体减振效果。提高TMD质量比和降低移动荷载速度有助于提高TMD的减振效果。增大阻尼比会减弱TMD的效果,应综合考虑减振效果和工作空间的要求确定。

Abstract

In order to reduce the dynamic response of submerged floating tunnel (SFT) under moving load, tuned mass damper (TMD) was used as the vibration control measure, and the vibration reduction effect was analyzed. The SFT tube was simplified as a beam on elastic foundation, the vehicle load was simulated by a moving harmonic force, the added mass force and the hydraulic resistance which caused by the movement of the tube were considered according to the Morison equation, the vibration governing equations of the SFT tube-TMD system were established. The equations were solved by the Newmark-β method, and the vibration reduction effect of TMD on the SFT tube was analyzed. In view of the vibration characteristics of the SFT tube, a distributed TMD layout was proposed, and the influence of moving speed and TMD damping ratio was discussed. The results shows that TMD has a significant vibration reduction effect on the SFT tube under moving harmonic load, and the maximum displacement vibration reduction rate is more than 50%. Since multiple modes participate in vibration, the effective damping range of a single TMD is limited. Under the condition of keeping the total mass unchanged, the distributed TMD can achieve better overall vibration reduction effect. Increasing the mass ratio of TMD and decreasing the moving load speed are helpful to improve the vibration reduction effect of TMD. Increasing the damping ratio will weaken the effect of TMD, which should be determined by considering the damping effect and the requirements of the working space.

关键词

悬浮隧道 / 移动荷载 / 调谐质量阻尼器(TMD) / 动力响应 / 减振

Key words

Submerged floating tunnel / Moving load / Dynamic response / Tuned mass damper (TMD) / Vibration reduction.

引用本文

导出引用
杨赢1, 金利成1, 项贻强2, 何余良1. 移动荷载作用下悬浮隧道管体TMD减振分析及优化布置[J]. 振动与冲击, 2024, 43(1): 165-171
YANG Ying1, JIN Licheng2, XIANG Yiqiang2, HE Yuliang1. TMD Vibration reduction analysis and optimal layout for submerged floating tunnel tube under moving load[J]. Journal of Vibration and Shock, 2024, 43(1): 165-171

参考文献

[1] 项贻强,薛静平. 水中悬浮隧道在国内外的研究[J]. 中外公路,2002, 22(6): 49-52. XIANG Yi-qiang, XUE Jing-ping. Study on submerged floating tunnels in the world [J]. Journal of China & Foreign Highway, 2002, 22(6): 49-52. [2] 董满生,葛斐,惠磊,等. 水中悬浮隧道研究进展[J]. 中国公路学报,2007, 43(6) : 18-23. DONG Man-sheng, GE Fei, HUI Lei, et al. Research Progress in Submerged Floating Tunnels [J]. China Journal of Highway and Transport, 2007, 43(6): 18-23. [3] Tariverdilo S, Mirzapour J, Shahmardani M, et al. Vibration of submerged floating tunnels due to moving loads [J]. Applied Mathematical Modelling, 2011, 35(11) :5413-5425. [4] 董满生,张嫄,唐飞,等. 等间距移动荷载作用下水中悬浮隧道管体的位移响应[J]. 应用力学学报,2016, 33(5): 760-765. DONG Man-sheng, ZHANG Yuan, TANG Fei, et al. Displacement response of submerged floating tunnel tube due to moving loads of constant intervals [J]. Chinese Journal of Applied Mechanics, 2016, 33(5): 760-765. [5] 项贻强, 林亨, 陈政阳. 移动荷载作用下悬浮隧道动力响应分析[J]. 振动与冲击, 2018, 37(4) : 82-87. XIANG Yi-qiang, LIN Heng, CHEN Zheng-yang. Dynamic response analysis of a submerged floating tunnel subjected to moving load [J]. Journal of Vibration and Shock, 2018, 37(4):82-87. [6] Lin H, Xiang Y Q, Yang Y, et al. Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction [J]. Ocean Engineering, 2018, 166(15):290-301. [7] Jin C, Bakti F P, Kim M H. Time-domain coupled dynamic simulation for SFT-mooring-train interaction in waves and earthquakes [J]. Marine Structures,2021,75:102883. [8] Xiang Y Q, Lin H, Bai B, et al. Numerical simulation and experimental study of submerged floating tunnel subjected to moving vehicle load [J]. Ocean Engineering, 2021, 235:109431. [9] 秦银刚. 洋流涡激作用下水中悬浮隧道稳定性的关键技术研究[D]. 成都:西南交通大学,2009. [10] Sato M, Kanie S, Mikami T. Mathematical analogy of a beam on elastic supports as a beam on elastic foundation[J]. Applied Mathematical Modelling, 2008,32(5):688-69. [11] 张璨. 重载列车振动对桥梁的影响及减振控制[D]. 武汉:武汉理工大学, 2017. [12] CC Lin, J F Wang, BF Chen. Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers [J]. Journal of Bridge Engineering,2005, 4(10): 398-414. [13] 肖新标,沈火明. 移动荷载作用下的桥梁振动及其TMD控制[J]. 振动与冲击,2005, 24( 2) : 58-61. XIAO Xin-biao, SHEN Hou-ming. Vibration and the TMD control of bridges under moving loads [J]. Journal of Vibration and Shock, 2005, 24(2) :58-61. [14] 王浩, 刘海红, 陶天友,等. TMD对列车作用下大跨钢桁架桥的振动控制研究[J]. 振动工程学报, 2014, (3):7. WANG Hao, LIU Hai-Hong, TAO Tian-You, et al. Vibration control of long-span steel truss bridge subjected to train loadings using TMD [J]. Journal of Vibration Engineering,2014, (3):7. [15] 胡可, 丁雅杰, 王佐才,等. 基于分布式TMD的预制钢板组合梁桥的行车振动及控制[J]. 合肥工业大学学报:自然科学版, 2020, 43(3):7. HU Ke, DING Ya-Jie, WANG Zuo-Cai, et al. Distributed TMD based vehicle-bridge vibration and control of precast steel-concrete composite beam bridge [J]. Journal of Hefei University of Technology (Natural Science),2020, 43(3):7. [16] 杨赢. 冲击荷载作用下悬浮隧道动力响应研究[D]. 杭州:浙江大学, 2017. [17] 项贻强,晁春峰. 悬浮隧道管体及锚索耦合作用的涡激动力响应[J]. 浙江大学学报(工学版),2012, 46(3): 409-415. XIANG Yi-qiang, CHAO Chun-feng. Vortex-induced dynamic response for combined action of tube and cable of submerged floating tunnel [J]. Journal of Zhejiang University(Engineering Science), 2012, 46(3): 409-415. [18] Xiang Y Q, YANG Y. Spatial dynamic response of submerged floating tunnel under impact load [J].Marine Structures,2017, 53, 20-31. [19] 晁春峰. 悬浮隧道流固耦合动力响应分析及试验研究[D]. 杭州:浙江大学,2013. [20] 中华人民共和国交通部. JTG D60-2015 公路桥涵设计通用规范[S]. 北京:人民交通出版社, 2015. [21] Jin C, Chung W C, Kwon D S, Kim M H. Optimization of tuned mass damper for seismic control of submerged floating tunnel [J]. Engineering Structures, 2021, 241. [22] 李亚峰,李寿英,陈政清. 变化型惯质调谐质量阻尼器的优化与性能评价[J]. 振动工程学报,2020, 33(5): 877-884. LI Ya-feng, LI Shou-ying, CHEN Zheng-qing. Optimization and performance evaluation of variant tuned mass damper inerter [J]. Journal of Vibration Engineering, 2020, 33(5): 877-884.

PDF(1488 KB)

384

Accesses

0

Citation

Detail

段落导航
相关文章

/