基于磁性液体的磁浮式振动俘能器系统建模与输出性能分析

张宪文,李国正,王伟杰,苏树强

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 218-229.

PDF(3271 KB)
PDF(3271 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 218-229.
论文

基于磁性液体的磁浮式振动俘能器系统建模与输出性能分析

  • 张宪文,李国正,王伟杰,苏树强
作者信息 +

Modeling and output performance analysis of maglev vibration energy harvester system based on magnetic liquid

  • ZHANG Xianwen, LI Guozheng, WANG Weijie, SU Shuqiang
Author information +
文章历史 +

摘要

针对现有振动俘能器输出功率低、工作频带范围小等问题,提出了一种基于磁性液体的非线性磁浮式振动俘能器新型结构。首先,提出新型俘能器的结构形式,分析其工作原理,建立磁偶极子非线性力学模型,对比仿真结果与实验数据,验证其准确性;然后,分析磁性液体的二阶浮力和粘性阻尼,建立其数学模型,运用多尺度变换方法求解俘能器动力学方程的近似解,进而获得输出性能响应模型;最后,分析三类系统结构参数和激励加速度变化对俘能器输出性能的影响,对比了有无磁性液体时俘能器的输出性能。结果表明:磁铁间距、悬浮磁铁与磁性液体的总质量和激励加速度能有效地改变俘能器的工作频率范围和输出功率幅值,而阻尼比主要影响输出功率幅值。新型俘能器输出电压峰峰值和输出功率峰值分别达到426.88mV和0.56mW,增加磁性液体后输出电压和功率分别提升了22.67%和75%,对比其它低频振动俘能器,具有较优的输出功率特性。新型磁浮式俘能器的结构形式与建立的动力学模型能为拓宽此类俘能器工作频带范围和增强输出功率性能提供新的解决思路,具有良好的参考价值。

Abstract

Aiming at the problems of low output power and small working frequency range of existing vibration energy harvesters, a new structure of nonlinear maglev vibration energy harvester based on magnetic liquid was proposed. Firstly, the structure of the new energy harvester is proposed, its working principle is analyzed, and the nonlinear mechanical model of magnetic dipole is established. The simulation results are compared with the experimental data to verify its accuracy. Then, the second-order buoyancy and viscous damping of the magnetic liquid were analyzed, and its mathematical model was established. The approximate solution of the dynamic equation of the energy regenerator was solved by multi-scale transformation method, and the output performance response model was obtained. Finally, the influence of three kinds of system structure parameters and excitation acceleration on the output performance of energy harvester is analyzed and the output performance of energy harvester with or without magnetic liquid is compared. The results show that the distance between magnets, the total mass of the suspension magnet and the magnetic liquid and the excitation acceleration can effectively change the working frequency range and the output power amplitude of the energy harvesting device, and the damping ratio mainly affects the output power amplitude. The output voltage peak value and output power peak value of the new energy harvester respectively reach 426.88mV and 0.56mW. The output voltage and power respectively increase by 22.67% and 75% after adding magnetic liquid. Compared with other low-frequency vibration energy harvesters, it has better output power characteristics. The structure and dynamic model of the new maglev energy harvester can provide a new solution for broadening the range of the working frequency band and enhancing the output power performance of this kind of energy harvester, which has good reference value.

关键词

振动俘能 / 非线性 / 磁性液体 / 多尺度变换法 / 输出性能

Key words

vibrational energy capture / nonlinearity / magnetic liquid / multiscale transformation method / power generation performance

引用本文

导出引用
张宪文,李国正,王伟杰,苏树强. 基于磁性液体的磁浮式振动俘能器系统建模与输出性能分析[J]. 振动与冲击, 2024, 43(1): 218-229
ZHANG Xianwen, LI Guozheng, WANG Weijie, SU Shuqiang. Modeling and output performance analysis of maglev vibration energy harvester system based on magnetic liquid[J]. Journal of Vibration and Shock, 2024, 43(1): 218-229

参考文献

[1] KECIK K, KOWALCZUK M. Effect of Nonlinear Electromechanical Coupling in Magnetic Levitation Energy Harvester[J]. Energies, 2021, 14(9): 2715. [2] WANG W, CAO J, ZHANG N, et al. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments[J]. Energy Conversion & Management, 2017, 132(1):189-197. [3] LI Chunfang, WU Shuai, et al. Enhanced Bandwidth Nonlinear Resonance Electromagnetic Human Motion Energy Harvester Using Magnetic Springs and Ferrofluid[J]. Mechatronics IEEE/ASME Transactions on, 2019, 24(2): 710-717. [4] RAHIMI A. Fully Self-Powered Electromagnetic Energy Harvesting System With Highly Efficient Dual Rail Output[J]. Sensors Journal, IEEE, 2012, 12(6): 2287- 2298. [5] GAO M, PING W, YONG C, et al. Design and Verification of a Rail-Borne Energy Harvester for Powering Wireless Sensor Networks in the Railway Industry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(99): 1596-1609. [6] PALAGUMMI S, YUAN F G. An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester[J]. Journal of Sound & Vibration, 2015, 342: 330-345. [7] 侯成伟, 单小彪, 宋汝君, 等. 风向自适应型涡激振动压电俘能器的试验研究[J]. 机械工程学报. 2022, 1-8. HOU Chengwei, SHAN Xiaobiao, SONG Rujun, et al. Experimental Study of Wind Adaptive Vortex-induced Vibration Piezoelectric Energy Harvester [J]. Chinese Journal of Mechanical Engineering. 2022, 1-8. [8] BJURSTROM J, OHLSSON F, VIKERFORS A, et al. Tunable spring balanced magnetic energy harvester for low frequencies and small displacements[J]. Energy Conversion and Management, 2022, 259: 115568. [9] ZHANG Y, WANG T, LUO A, et al. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density[J]. Applied energy, 2018, 212: 362-371. [10] 孙玉华, 李守太, 谢守勇, 等. 不同激励下宽频磁浮俘能器俘能试验[J]. 农业工程学报, 2020, 36(18): 81-89. SUN Yuhua, LI Shoutai, XIE Shouyong, et al. Mingyuan. Energy capture experiment of broadband Maglev energy harvester under different excitation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 81-89. [11] XU J, LENG Y, SUN F, et al. Modeling and performance evaluation of a bi-stable electromagnetic energy harvester with tri-magnet levitation structure[J]. Sensors and Actuators A: Physical, 2022, 346: 113828. [12] SUN Y, WANG P, LU J, et al. Rail corrugation inspection by a self-contained triple-repellent electromagnetic energy harvesting system[J]. Applied Energy, 2021, 286: 116512. [13] 孙玉华, 王平, 徐井芒, 等. 钢轨波磨自感知原位检测系统试验研究[J]. 机械工程学报, 2021, 57(18): 107-117. SUN Yuhua, WANG Ping, XU Jingmang, et al. Experimental Research on Rail Self-sensing In-situ Detection System [J]. Chinese Journal of Mechanical Engineering, 2021, 57(18): 107-117. [14] 孔令强, 袁天辰, 杨俭, 等. 双自由度磁悬浮式轨道车辆振动俘能器的研究[J]. 振动与冲击, 2020, 39(21): 156-162. KONG Lingqiang, YUAN Tianchen, YANG Jian, et al. Research on Vibration Energy Harvester of Double-DOF maglev Rail Vehicle [J]. Journal of Vibration and Shock, 2020, 39(21): 156-162. [15] 王祖尧, 丁虎, 陈立群. 多频激励下添加线性振子磁悬浮能量采集系统建模及其输出功率影响参数分析[J]. 振动与冲击, 2018, 37(17): 225-229. WANG Zuyao, DING Hu, CHEN Liqun. Modeling of Magnetic levitation Energy Acquisition System with Linear Oscillator and Analysis of Influence Parameters of Output Power under Multi-Frequency Excitation [J]. Journal of Vibration and Shock, 2018, 37(17): 225-229. [16] NAMMARI A, DOUGHTY S, SAVAGE D, et al. Design and analysis of a small-scale magnetically levitated energy harvester utilizing oblique mechanical springs[J]. Microsystem Technologies, 2017, 23(10): 4645-4657. [17] ABED I, KACEM N, BOUAZIZI M L, et al. Nonlinear 2-dofs vibration energy harvester based on magnetic levitation[C]// International Modal Analysis Conference. Springer, Cham, 2015. [18] FIROOZY P, FRISWELL M I, GAO Q. Using time delay in the nonlinear oscillations of magnetic levitation for simultaneous energy harvesting and vibration suppression[J]. International Journal of Mechanical Sciences, 2019, 163: 105098. [19] 陈铎. 基于磁性液体的多频振动能量采集器研究[D].北京交通大学,2021. CHEN Duo. Research on Multi-frequency Vibration Energy Collector Based on Magnetic Liquid. Beijing Jiaotong University,2021. [20] 李强. 一种新型磁性液体加速度传感器的设计及实验研究[D]. 北京交通大学, 2012. LI Qiang. Design and Experimental Study of a New Magnetic Liquid acceleration Sensor [D]. Beijing Jiaotong University, 2012. [21] MANN B P, SIMS N D. Energy harvesting from the nonlinear oscillations of magnetic levitation[J]. Journal of sound and vibration, 2009, 319(1-2): 515-53. [22] 刘延柱, 陈立群. 非线性振动[M]. 高等教育出版社, 2001. LIU Yanzhu, CHEN Liqun. Nonlinear Vibration [M]. Higher Education Press, 2001. [23] 谢伟平, 陈谣, 王先锋. 基于MFC的地铁轨道振动能量收集研究[J]. 振动与冲击, 2022, 41(09): 210-218+236. XIE Weiping, CHEN Yu, WANG Xianfeng. Research on vibration energy collection of subway track based on MFC [J]. Journal of Vibration and Shock, 2022, 41(09): 210-218+236. [24] 孔令强. 电磁式轨道车辆振动能量俘获方法研究[D]. 上海工程技术大学, 2020. KONG Lingqiang. Research on Vibration Energy Capture Method of Electromagnetic Rail Vehicle [D]. Shanghai University of Engineering Science, 2020. [25] BERDY D F, VALENTINO D J, PEROULIS D. Design and optimization of a magnetically sprung block magnet vibration energy harvester[J]. Sensors and actuators A: Physical, 2014, 218: 69-79. [26] PALAGUMMI S, YUAN F G. An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester[J]. Journal of Sound and Vibration, 2015, 342: 330-345. [27] BOUENDEU E, GREINER A, SMITH P J, et al. A low-cost electromagnetic generator for vibration energy harvesting[J]. IEEE Sensors Journal, 2010, 11(1): 107-113. [28] GALCHEV T, KIM H, NAJAFI K. Micro power generator for harvesting low-frequency and nonperiodic vibrations[J]. Journal of Microelectromechanical Systems, 2011, 20(4): 852-866. [29] GU L, LIVERMORE C. Impact-driven, frequency up- converting coupled vibration energy harvesting device for low frequency operation[J]. Smart materials and structures, 2011, 20(4): 045004.

PDF(3271 KB)

250

Accesses

0

Citation

Detail

段落导航
相关文章

/