基于压电驱动的圆柱壳内振源振动传递控制

贺佩韬1,2,王双立1,2,耿小明3,谢溪凌1,2,张志谊1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 246-251.

PDF(2223 KB)
PDF(2223 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 246-251.
论文

基于压电驱动的圆柱壳内振源振动传递控制

  • 贺佩韬1,2,王双立1,2,耿小明3,谢溪凌1,2,张志谊1,2
作者信息 +

Vibration transmission control of vibration source in a cylindrical shell based on piezoelectric actuator

  • HE Peitao1,2, WANG Shuangli1,2, GENG Xiaoming3, XIE Xiling1,2, ZHANG Zhiyi1,2
Author information +
文章历史 +

摘要

针对圆柱壳内振源振动通过环形支承向壳体传递的问题,提出一种基于压电作动器的主被动支承隔振方案,并通过振源-主被动支承-壳体耦合系统进行振动控制分析。根据Flugge壳理论,采用波传播法建立圆柱壳体振动模型,同时采用有限元方法建立振源及主被动支承的振动模型,最终使用子结构频响函数综合获得耦合系统振动模型。基于耦合系统模型和理想控制假设,在频域给出壳体振动可控性,并通过振源-主被动支承-壳体试验系统验证控制的有效性。仿真与试验结果表明,基于压电作动器的主被动隔振方案能显著降低壳体的宽带和线谱振动。

Abstract

To attenuate vibration transmission along the annular support in a compact shell, an active/passive vibration isolation support with piezoelectric actuators is proposed. The analysis of vibration control is carried out on the basis of the dynamic model of the vibration source-active/passive support-cylindrical shell system. The cylindrical shell is modeled by the Flugge shell theory and the wave propagation method. The vibration source, active/passive support, etc. are modeled by the finite element method. The coupled model is established on the frequency response functions of the subsystems. Based on the coupled model and ideal control assumption, the feasibility of active vibration control is investigated in the frequency domain. A vibration source-active/passive support-cylindrical shell experimental systemis constructed to verify the effectiveness of the control method. Simulation and experimental results show that the active/passive support vibration isolation support with piezoelectric actuators can significantly attenuate wide-band and line spectrum vibration of the shell.

关键词

主动控制 / 压电驱动 / 振动传递 / 圆柱壳体

Key words

Active vibration control / Piezoelectric actuator / Vibration transmission / Cylindrical shell

引用本文

导出引用
贺佩韬1,2,王双立1,2,耿小明3,谢溪凌1,2,张志谊1,2. 基于压电驱动的圆柱壳内振源振动传递控制[J]. 振动与冲击, 2024, 43(1): 246-251
HE Peitao1,2, WANG Shuangli1,2, GENG Xiaoming3, XIE Xiling1,2, ZHANG Zhiyi1,2. Vibration transmission control of vibration source in a cylindrical shell based on piezoelectric actuator[J]. Journal of Vibration and Shock, 2024, 43(1): 246-251

参考文献

[1] 刘 凯,朱石坚,丁少春. 鱼雷减振降噪技术应用及发展[J]. 鱼雷技术,2008,16(6):24-27. Liu Kai, Zhu Shi-jian, Ding Shao-chun. Application and Development of Vibration and Noise Suppression Technology for Torpedo[J]. Torpedo Technology, 2008, 16(6): 24-27. [2] 杨忠超,楼京俊,孙 炯,等. 水下航行器推进器-轴系-壳体系统声振特性研究[J]. 舰船科学技术,2017,39(12):30-35. Yang Zhong-chao, Lou Jing-jun, Sun Jiong, et al. Study on acoustic and vibration characteristics of underwater vehicle propulsion shafting shell system[J]. Ship science and technology, 2017,39(12):30-35. [3] 谢溪凌,任明可,黄修长,等. 基于主动艉支承的推进轴系横向振动抑制仿真与实验研究[J]. 振动与冲击,2020,39(15):271-276. Xie Xi-ling, Ren Ming-ke, Huang Xiu-chang, et al. Simulation and test for lateral vibration transmission suppression of a propulsion shafting system based on active stern support[J]. Journal of Vibration and Shock, 2020,39(15):271-276. [4] 李星升,关静岩. 泵喷推进器在某水下航行器降噪方面的应用[J]. 数字海洋与水下攻防,2018,1(1):51-56. Li Xin-sheng, Guan Jing-Yan. Application of pump jet propeller in noise reduction of an underwater vehicle[J]. Digital Ocean and Underwater Attack and Defense, 2018,1(1):51-56. [5] 覃 会,郑洪波,张志谊. 含电磁轴承的推进轴系横向振动特性研究[J]. 振动与冲击,2018,37(10):129-134. Qin Hui, Zheng Hong-bo, Zhang Zhi-yi. Lateral vibration of a propulsion shafting system install with a magnetic bearing[J]. Journal of Vibration and Shock, 2018,37(10):129-134. [6] 段 勇,郭 君,周凌波,等. 隔振技术在水下航行器推进轴系振动控制中的应用[J]. 水下无人系统学报,2018,26(1):70-77. Duan Yong, Guo Jun, Zhou Ling-bo, et al. Application of vibration isolation technology in underwater vehicle propulsion shafting vibration control[J]. Journal of Underwater Unmanned Systems, 2018,26(1):70-77. [7] 段 勇,刘瑞杰,马 琳. 金属橡胶在鱼雷推进轴系振动控制中的应用[J]. 船舶力学,2020,24(9):1187-1195. Duan Yong, Liu Rui-jie, Ma Lin. Application of metal rubber to the vibration control of torpedo propulsion shafting[J]. Journal of Ship Mechanics, 2020,24(9):1187-1195. [8] 刘贵杰,闫 茹,姚永凯,等. 推进器系统激励下水下航行器结构中功率流分布特性及优化设计研究[J]. 振动与冲击, 2014,33(19):74-80. Liu Gui-jie, Yan Ru, Yao Yong-kai, et al. AUV structure power flow distribution characteristics and hull optimization design under propulsive system excitation[J]. Journal of Vibration and Shock, 2014,33(19):74-80. [9] 肖汉林,于俊卫,张瑞斌,等. 鱼雷电机-艉轴系统振动与声辐射特性分析[J]. 鱼雷技术,2005,13(4):33-36. Xiao Han-lin, Yu Jun-wei, Zhang Rui-bin, et al. Research on Vibration and Acoustic Radiation Characteristic of Torpedo Electric Motor and Stern Shaft System[J]. Torpedo Technology, 2005, 13(4): 33-36. [10] 刘晓明. 某水下航行器电机支架减振结构研究[D]. 昆明:昆明理工大学,2013. Liu Xiao-ming. Research on vibration reduction structure of motor bracket of an underwater vehicle[D]. KunMing: KunMing University of Science and Technology, 2013. [11] Yang Yang, Pan Guang, Yin Shaoping, et al. Verification of Vibration Isolation Effectiveness of the Underwater Vehicle Power Plant[J]. Journal of Marine Science and Engineering, 2021,9,382. [12] 曹志远. 板壳振动理论[M]. 北京:中国铁道出版社,1989. Cao Zhi-yuan. Plate and shell vibration theory[M]. Beijing: China Railway Press, 1989. [13] 张 磊.含内部结构圆柱壳振动声辐射计算方法研究[D]. 武汉:华中科技大学,2019. Zhang Lei. Research on the calculation method of vibration and acoustic radiation of cylindrical shells with interior structures[D]. Wuhan: Huazhong University of Science & Technology, 2019.

PDF(2223 KB)

Accesses

Citation

Detail

段落导航
相关文章

/