为了研究振动标线设置对长大坡桥梁结构挠度冲击系数的影响,以30m连续箱梁桥和五轴车辆为研究对象,基于实际振动标线结构形式进行不平顺度模拟,建立车桥耦合振动方程。借助ANSYS及APDL语言,采用直接积分法进行求解,得到了不同跨中位置挠度时程曲线和冲击系数,研究了振动标线数量、组间距和位置对连续梁桥不同跨中截面挠度冲击系数的影响。结果表明,设置振动标线后连续梁桥挠度冲击系数均大于规范值,且最大值为规范值的2.40倍;振动标线组数增加对下坡方向第一跨跨中位置挠度冲击系数影响不大,但对第二跨跨中挠度冲击系数有较大影响;随着振动标线组组间距增大,不同跨中截面挠度冲击系数变化规律不同;振动标线设置位置对不同跨中截面挠度冲击系数有一定影响;当振动标线组数为6时,首条振动标线宜选择距梁端距离4m位置,振动标线组间距宜为4.5m,当振动标线组数为4或5时,需根据不同跨径布置选择相应的振动标线设置形式。研究结论可为桥梁结构中振动标线的设置提供参考。
Abstract
In order to study the influence of vibration marking on the deflection dynamic load allowance(DLA) of long slope bridge structure, taking 30m span continuous box girder bridge and five-axis vehicle as the research object, the irregularity based on the actual vibration marking form was simulated, and the vehicle bridge coupling vibration equation is established. With the help of ANSYS and APDL language, the direct integration method is used to solve the equation, and the deflection time history curves and the DLA of different midspan positions are obtained. The influence of the number, spacing and position of vibration markings on the deflection DLA of different midspan sections of continuous girder bridge is studied. The results show that the deflection DLA of continuous girder bridge with vibration marking is greater than that in the code value, and the maximum value of the former is 2.40 times than the latter; the number of vibration markings has little influence on the deflection DLA of the first mid-span in the travelling direction, but it has a great influence on the deflection DLA of the second mid-span; with the increase of the spacing of vibration markings, the deflection DLA of different midspan positions changes differently; the position of vibration markings has effect on the deflection DLA of different midspan positions. When the number of vibration markings groups is 6, the distance from the first vibration marking to the bridge end is suggested to be 4m, and the spacing is 4.5m. When the number of vibration markings groups is 4 or 5, the vibration marking setting should be selected according to different span layout. The research results can provide reference for the setting of vibration markings on bridge structures.
关键词
桥梁工程 /
连续梁桥 /
振动标线 /
冲击系数 /
车-桥耦合 /
时程曲线
{{custom_keyword}} /
Key words
bridge engineering /
continuous girder bridge /
vibration marking /
dynamic load allowance /
vehicle-bridge coupled /
time-history curve
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐翔,罗青. 振动标线在宁杭高速公路上的应用与体会[J].公路,2005,49(3): 71-173.
XU Xiang, LUO Qing. Application and experience of vibration marking on NingHang Expressway [J]. Highway, 2005, 49(3): 171-173.
[2] 袁振友,夏伟君,李士辉,等. 减速振动标线在一级公路平面交叉口的应用[J]. 公路,2005,49(4): 167-169.
YUAN Zhen-you, XIA Wei-jun, LI Shi-hui, et al. Application of deceleration vibration marking at grade intersection of first class highway [J]. Highway, 2005, 49(4): 167-169.
[3] 侯树展,孙小端,贺玉龙. 高速公路振动减速标线路段运行速度变化规律研究[J]. 中国公路学报,2010,23(S2): 105-110.
HOU Shu-zhan, SUN Xiao-duan, HE Yu-long. Research on variational rule of operating speed along transverse rumble strip on expressway section [J]. China Journal of Highway and Transport, 2010, 23(S2): 105-110.
[4] 余金林,徐良杰,刘启远,等. 干线公路无控交叉口振动减速标线设计与舒适性评价[J].武汉理工大学学报(交通科学与工程版),2015,39(1):135-138+143.
YU Jin-lin, XU Liang-jie, LIU Qi-yuan, et al. Design and comfort evaluation of vibration deceleration marking at uncontrolled intersection of trunk highway [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(1): 135-138+143.
[5] 姚明,陈浩杰,温鹏景,等. 高速公路振动减速标线参数优化设计[J].江苏大学学报(自然科学版),2019,40(1): 62-66.
YAO Ming, CHEN Hao-jie, WEN Peng-jing, et al. Optimization design of vibration deceleration marking parameters of expressway [J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(1): 62-66.
[6] Calcada R, Cunha A, Delgado R. Analysis of traffic-induced Vibrations in a cable-stayed bridge. Part II: Numerical Modeling and Stochastic Simulation [J]. Journal of Bridge Engineering, 2005, 10(4): 386-397.
[7] Chatterjee P K, Datta T K, Surana C S. Vibration of continuous bridges under moving vehicles [J]. Journal of Sound & Vibration, 1994, 169(5): 619-632.
[8] Michaltsos G T. Parameters affecting the dynamic response of light (steel) bridges. Automatic Control and Robtics, 2000, 1(10): 1203-1218.
[9] Li Y, Obrien E, A González. The development of a dynamic amplification estimator for bridges with good road profiles [J]. Journal of Sound and Vibration, 2006, 293(12): 125-137.
[10] 卜建清,娄国充,罗韶湘. 汽车对桥梁冲击作用分析[J]. 振动与冲击,2007,26(1): 52-55.
BU Jian-qing, LOU Guo-chong, LUO Shao-xiang. Impact analysis of automobile on bridge [J]. Journal of vibration and shock, 2007, 26(1): 52-55.
[11] 薛宇欣,周勇军,赵煜,等. 基于空间桥面不平顺的简支梁桥冲击系数研究[J]. 合肥工业大学学报(自然科学版),2021,44(3): 389-395.
XUE Yu-xin, ZHOU Yong-jun, ZHAO Yu, et al. Research on dynamic load allowance of simply supported girder bridge based on spatial bridge deck roughness [J]. Journal of Hefei University of Technology (Natural Science), 2021, 44(3): 389-395.
[12] 蒋培文,贺拴海,宋一凡,等. 简支梁车桥耦合振动及其影响因素[J]. 长安大学学报(自然科学版),2013,33(1): 59-66.
JIANG Pei-wen, HE Shuan-hai, SONG Yi-fan, et al. Vehicle-bridge coupled vibration and its influencing factors of simple beam [J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(1): 59-66.
[13] 刘晨光,王宗林,高庆飞. 考虑桥面不平整度退化的简支梁桥冲击系数检测方法研究[J]. 振动与冲击,2019,38(1): 206-214.
LIU Chen-guang, WANG Zong-lin, GAO Qing-fei. Impact coefficient detecting method for a simply supported girder bridge considering degradation of deck unevenness [J]. Journal of vibration and shock, 2019, 38(1): 206-214.
[14] 周勇军,赵洋,赵煜,等. 基于动载试验荷载效率的简支梁桥冲击系数研究[J]. 振动与冲击,2021,40(20): 207-216.
ZHOU Yong-jun, ZHAO Yang, ZHAO Yu, et al. A study on dynamic load allowance of a simply supported girder bridge based on load efficiency of a dynamic load test [J]. Journal of vibration and shock, 2021, 40(20): 207-216.
[15] 沈火明,肖新标. 求解车桥耦合振动问题的一种数值方法[J]. 西南交通大学学报,2003(6): 658-662.
SHEN Huo-ming, XIAO Xin-biao. A numerical method for solving vehicle-bridge coupled vibration problem [J]. Journal of Southwest Jiaotong University, 2003(6): 658-662.
[16] 邢福伟. 中小跨径公路坡桥动力特性及车载响应分析[D]. 西安:长安大学,2015.
XING Fu-wei. Dynamic characteristics and vehicle response analysis of small and medium span highway slope bridge [D]. Xi’an: Chang'an University, 2015
[17] 邓露,段林利,何维,等. 中国公路车-桥耦合振动车辆模型研究[J]. 中国公路学报,2018,31(7): 92-100.
DENG Lu, DUAN Lin-li, HE Wei, et al. Study on vehicle model for vehicle-bridge coupling vibration of highway bridges in china [J]. China Journal of Highway and Transport, 2018, 31(7): 92-100.
[18] 周勇军,薛宇欣,李冉冉,等. 桥梁冲击系数理论研究和应用进展[J]. 中国公路学报,2021,34(4): 31-50.
ZHOU Yong-jun, XUE Yu-xin, LI Ran-ran, et al. Theoretical research and application progress of bridge impact coefficient [J]. Chinese Journal of highway and Transport, 2021, 34(4): 31-50
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}