基于时间有限元的非线性系统周期响应求解及稳定性分析

郑永进,汪利,刘祚秋

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 276-282.

PDF(1611 KB)
PDF(1611 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 276-282.
论文

基于时间有限元的非线性系统周期响应求解及稳定性分析

  • 郑永进,汪利,刘祚秋
作者信息 +

Solving and stability analysis of periodic response of nonlinear system based on time finite element method

  • ZHENG Yongjin, WANG Li, LIU Zuoqiu
Author information +
文章历史 +

摘要

非线性现象广泛存在于结构分析之中,获取非线性系统的周期响应对分析结构的频响特征、分岔与稳定特性至关重要。为此,一种基于时间有限元的非线性系统周期响应求解方法被提出。该方法在伽辽金时间有限元法的基础上,引入周期边界条件,并结合牛顿迭代法进行求解。该方法的优势在于:(a) 能够简单地处理非光滑周期荷载(如阶跃或冲击周期荷载),以及(b)能够直接根据时间有限元的系统矩阵计算传递矩阵和Floquet乘子,进而判定周期解的稳定性。最后,通过数值算例验证了所提时间有限元在非线性系统周期响应求解及稳定性分析中的正确性、收敛性以及精度。

Abstract

Nonlinear phenomena widely exist in structural analysis. Obtaining the periodic response of nonlinear systems is crucial to analyzing the frequency response characteristics, bifurcation and stability characteristics of structures. Therefore, a method for solving the periodic response of nonlinear systems based on time finite element method is proposed. On the basis of Galerkin time finite element method, in this method, periodic boundary conditions are introduced and combined with Newton iterative method to solve problem. The advantages of this method are: (a) it can simply deal with nonsmooth periodic loads (such as step or impact periodic loads), and (b) it can directly calculate the transfer matrix and Floquet multiplier according to the system matrix of the time finite element, and then determine the stability of the periodic solution. Finally, the correctness, convergence and accuracy of the proposed time finite element method in the periodic response solution and stability analysis of nonlinear systems are verified by numerical examples.

关键词

非线性系统 / 时间有限元 / 非光滑周期荷载 / 稳定性分析 / 稳态响应。

Key words

nonlinear systems / time finite method / Non-smooth periodic loads / analysis of stability / Steady-state response.

引用本文

导出引用
郑永进,汪利,刘祚秋. 基于时间有限元的非线性系统周期响应求解及稳定性分析[J]. 振动与冲击, 2024, 43(1): 276-282
ZHENG Yongjin, WANG Li, LIU Zuoqiu. Solving and stability analysis of periodic response of nonlinear system based on time finite element method[J]. Journal of Vibration and Shock, 2024, 43(1): 276-282

参考文献

[1] Wang L, Lu ZR, Liu J. Convergence rates of harmonic balance method for periodic solution of smooth and non-smooth systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99: 105826.5. [2] 汪雪川. 非线性系统求解方法的研究及航天工程应用[D].西北工业大学,2015. Wang XC. Research on Solving Method of Nonlinear System and Application in Aerospace Engineering[D]. Northwestern Polytechnical University,2015. [3] Zhang G, Zang C,Friswell MI. Measurement of multivalued response curves of a strongly nonlinear system by exploiting exciter dynamics[J]. Mechanical Systems and Signal Processing,2020,140: 106474. [4] Bunonmo A. The Periodic Solution of Van Der Pol’s Equation [J]. SIAM Journal of Applied Mathematics, 1988,59(1):156-171. [5] Bernardo MD, Budd CJ, Champneys AR, et al. Piecewise-smooth dynamical systems: theory and applications [D]. Springer, 2008. [6] Venkatesan A, Lakshmanan M. Bifurcation and chaos in the double-well Duffing–Van der Pol oscillator: numerical and analytical studies[J]. Physical Review E, 1997, 56(6): 6321. [7] 黄建亮,张兵许,陈树辉.优化迭代步长的两种改进增量谐波平衡法[J].力学学报,2022,54(5):1353-1363. Huang JL, Zhang BX, Chen SH. Two generalized incremental harmonic balance methods with optimization for iteration step[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363 [8] Wang L, Chen Y, Lu ZR, et al. Parameter identification of nonlinear structural systems through frequency response sensitivity analysis[J]. Nonlinear Dynamics, 2021, 104(4): 3975-3990. [9] 陈树辉. 强非线性振动系统的定量分析方法[M]. 北京: 科学出版社, 2007. Chen SH. Quantitative Analysis Method of Strong Nonlinear Vibration System[M]. Beijing: Science Press,2007. [10] Sundararajan P, Noah ST. Dynamics of forced nonlinear systems using shooting/arc-length continuation method—application to rotor systems[J]. Journal of Vibration & Acoustics, 1997, 119(1):9-20. [11] 杨昌棋,刘成群. 求解动力响应的时间有限元法[J]. 振动与冲击, 1987,4:73-79. Yang CQ, Liu CQ. Time Finite Element Method for Solving Dynamic Responses[J]. Journal of vibration and shock, 1987,4:73-79. [12] 于开平,邹经湘. 时间域有限元法[J]. 力学进展, 1998,28(4):461-468. Yu KP, Zhou JX. Time domain finite element method[J]. Advances in Mechanics, 1998,28(4):461-468. [13] 张方,朱德懋,张福祥. 动载荷识别的时间有限元模型理论及其应用[J].振动与冲击,1998,17(2):1-4. Zhang F, Zhu DM, Zhang FX. Time Finite Element Model Theory for Dynamic Load Identification and Its Application[J]. Journal of vibration and shock, 1998,17(2):1-4. [14] 荣吉利,李瑞英. 水轮发电机轴系横向振动响应的时间有限元法[J].北京理工大学学报, 2001,21(5):553-557. Rong JL, Li RY. Time Finite Element Method for the Responses Simulation of Transvers Vibration of Shaft Systems in Hydro-Generations[J]. Transactions of Beijing Institute of Technology, 2001,21(5):553-557. [15] 隋永枫,高强,钟万勰. 陀螺系统时间有限元方法[J].振动与冲击, 2012,31(13):95-98. Sui YF, Gao Q, Zhong WX. Time domain finite element method for gyroscopic systems[J]. Journal of vibration and shock, 2012,31(13):95-98. [16] Hulbert GM. Time finite element methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering. 1992; 33(2): 307-331. [17] Wang L, Zhong H. A time finite element method for structural dynamics [J].Applied Mathematical Modelling, 2017,41:445-461. [18] 周宇,汪利,刘祚秋.时间有限元的算法稳定性与周期延长率分析[J].中山大学学报(自然科学版),2022,61(03):110-115. Zhou Y, Wang L, Liu ZQ. Analysis of algorithm stability and period elongation of time finite element[J]. Acta Scientiarum Naturalium Universitatis. 2022,61(03):110-115. [19] Qin J, Zhong H. A Galerkin Time quadrature element formulation for linear structural dynamics[J]. Applied Mathematics and Computation, 2022, 413(31–32):126609. [20] 夏南,孟光.非线性系统周期强迫不平衡响应的稳定性分析[J].力学学报,2001(01):128-133. Xia N, Meng G. Stability Analysis of Periodic Forced Unbalance Response of Nonlinear Systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2001(01):128-133.

PDF(1611 KB)

333

Accesses

0

Citation

Detail

段落导航
相关文章

/