基于声振传递的飞行器噪声振动环境预示方法研究

李炳蔚 1,朱红民 1,刘时秀 2,陈刚 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 290-296.

PDF(2034 KB)
PDF(2034 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 290-296.
论文

基于声振传递的飞行器噪声振动环境预示方法研究

  • 李炳蔚 1,朱红民 1,刘时秀 2,陈刚 3
作者信息 +

A method for predicting aircraft noise and vibration environment based on acoustic and vibration transmission

  • LI Bingwei1, ZHU Hongmin1, LIU Shixiu2, CHEN Gang3
Author information +
文章历史 +

摘要

针对高速飞行器飞行条件下的噪声、振动环境恶劣、复杂、难预示的问题,提出了基于声振传递的飞行器飞行条件下的噪声、振动环境预示方法。首先,采用数值仿真、脉动压力风洞试验或工程分析等方法,获取飞行器在典型工况下的舱外脉动压力场;然后,通过噪声试验或声振耦合仿真分析的方法,得到飞行器声振传递特性;最后,根据获得的舱外脉动压力和声振能量传递特性,结合具体飞行参数得到实际飞行条件下的飞行器声振预示环境。采用本文提出的方法对某飞行器开展了振动环境预示研究,经地面及飞行试验验证振动环境量级预示精度可达1.6dB。本文提出的基于声振传递的飞行声振环境预示方法可以广泛应用在导弹、火箭等飞行器的精细化环境设计中,对于提高飞行器总体性能、环境适应性和飞行可靠性具有重要的工程意义。

Abstract

High-speed aircraft undergoes noise and vibration environment during the flight mission, and the environment is severe, complex, and difficult to predict. Therefore, a noise and vibration environment prediction method based on sound and vibration transmission is proposed. Firstly, the extravehicular fluctuating pressure field of aircraft under typical flying conditions is obtained by means of numerical simulation, fluctuating pressure wind tunnel test or engineering analysis. Secondly, through noise test or sound-vibration coupling simulation analysis, the sound-vibration transmission characteristics of aircraft are obtained. Finally, according to the obtained extravehicular pulsating pressure and sound and vibration energy transfer characteristics, combined with the specific flight parameters, the aircraft noise and vibration environment under the actual flight conditions is predicted. The method proposed in this paper is used to study the vibration environment prediction of an aircraft. It is verified by ground and flight tests that the prediction accuracy of vibration environment can reach 1.6dB. The prediction method of flight sound and vibration environment based on sound and vibration transmission proposed in this paper can be widely used in the fine environment design of missiles, rockets and other aircraft. It has important engineering significance for improving the overall performance, environmental adaptability and flight reliability of aircraft.

关键词

声振传递 / 飞行器 / 声振环境 / 环境预示 / 飞行环境 / 脉动压力

引用本文

导出引用
李炳蔚 1,朱红民 1,刘时秀 2,陈刚 3. 基于声振传递的飞行器噪声振动环境预示方法研究[J]. 振动与冲击, 2024, 43(1): 290-296
LI Bingwei1, ZHU Hongmin1, LIU Shixiu2, CHEN Gang3. A method for predicting aircraft noise and vibration environment based on acoustic and vibration transmission[J]. Journal of Vibration and Shock, 2024, 43(1): 290-296

参考文献

[1] 梁德利, 于开平, 韩敬永. 高速飞行器振动噪声环境预示技术[J]. 噪声与振动控制, 2013, 33(5): 58-63. Liang Deli, Yu Kaiping, Han Jingyong. Advances in Noise and Vibration Environment Prediction of High Speed Spacecrafts[J]. Noise and Vibration Control, 2013, 33(5): 58-63. [2] 邹元杰, 韩增尧, 张瑾. 航天器全频域力学环境预示技术研究进展[J]. 力学进展, 2012, 42(4): 445-454. Zou Yuanjie, Han Zengyao, Zhang Jin. Research progress on full-frequency prediction techniques of spacecraft’s mechanical environment[J]. Advances in Mechanics, 2012, 42(4): 445-454. [3] 杜骊刚. 飞行器在气动噪声作用下的振动环境预示方法[J]. 装备环境工程, 2008, 5(6): 65-67. Du Ligang. Precaution method of vibration environment of aircraft under aerodynamic noise[J].Equipment Environmental Engineering, 2008, 5(6): 65-67. [4] 俞励松. 典型飞行器结构在热环境和随机载荷作用下的动响应研究[D]. 硕士学位论文. 哈尔滨工业大学, 2017年. Yu Lisong. Research on the Dynamic Response of a Typical Aircraft Structure in the Thermal Environment and under Random Loading[D]. Dissertation for the Master Degree in Engineering. Harbin Institute of Technology, 2017. [5] 尹力中, 徐孝诚, 谭志勇. 再入飞行器壳体气动噪声响应分析和试验验证[J]. 强度与环境, 2002, 29(2): 5-9. Yin Lizhong, Xu Xiaocheng, Tan Zhiyong. Response Analysis and Experimental Verification for Reentry Vehicle Shell Subjected to Aerodynamic Noise[J]. Structure & Environment Engineering, 2002, 29(2): 5-9. [6] 张国军, 闫云聚, 李鹏博. 飞行器结构噪声致振试验及声振耦合响应分析[J]. 应用数学与力学, 2013, 34(11): 1157-1164. Zhang Guojun, Yan Yunju, Li Pengbo. Noise-Induced Vibration Experiment of Aircraft Structure and Vibro-Acoustic Coupling Response Analysis[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1157-1164. [7] 李青, 邢立坤, 柏江等. 航天器噪声试验中结构振动响应预示方法研究[J]. 力学学报, 2019, 51(2): 569-576. Li Qing, Xing Likun, Bai Jiang, et al. Method Study of Response Prediction of Structural Vibrations in Spacecraft Acoustic Tests[J]. China Journal of Theoretical and Applied Mechanics, 2019, 51(2): 569-576. [8] 王亮, 商霖, 牛智玲等. 基于 NASTRAN 导弹仪器舱噪声环境预示研究[J]. 导弹与航天运载技术, 2013, (2): 13-15. Wang Liang, Shang Lin, Niu Zhiling, et al. Study on Noise Environment Prediction of Missile Instrument Bay Based on NASTRAN[J]. Missiles and Space Vehicles, 2013, (2): 13-15. [9] 王亮, 张妍, 蔡毅鹏等. 基于随机有限元的导弹振动环境试验设计研究[J]. 强度与环境, 2018, 45(6): 56-63. Wang Liang, Zhang Yan, Cai Yipeng, et al. Study on the design of vibration environment test conditions for missile base on the stochastic finite element method[J]. Structure & Environment Engineering, 2018, 45(6): 56-63. [10] 韩丽, 高珂佳, 秦朝红. 考虑声场空间相关的结构声振响应预示方法[J]. 航天器环境工程, 2020, 37(3): 245-249. Han Li, Gao Kejia, Qin Zhaohong. A method for predicting the vibro-acoustic structure response with consideration of acoustic spatial correlation[J]. Spacecraft Environment Engineering, 2020, 37(3): 245-249. [11] 王其政. 声振预示及试验统计与置信限分析[J]. 强度与环境, 2001, (2): 27-32, 41. Wang Qizheng. Vibroacoustic prediction and Test Vibration Level Statistic and Confidence Interval Analysis[J]. Structure & Environment Engineering, 2001, (2): 27-32, 41. [12] 赵长见, 李炳蔚, 张志勇等. 基于阻尼辨识的双层厚壁结构声振环境预示研究[J]. 振动与冲击, 2017, 36(21): 225-231. Zhao Changjian, Li Bingwei, Zhang Zhiyong, et al. Acoustic-vibration environment prediction of a double-layered thickwalled structure based on the damping identification[J]. Journal of Vibration and Shock, 2017, 36(21): 225-231. [13] 聂旭涛, 熊飞峤. 运用统计能量分析法预示空空导弹舱内动力学环境[J]. 振动与冲击, 2007, 26(4): 140-143, 176. Nie Xutao, Xiong Fei. Predicting dynamic environment of air to air missile module with statistical energy analysis method[J]. Journal of Vibration and Shock, 2007, 26(4): 140-143, 176. [14] 谢久林, 杨松, 张俊刚. 航天器声振动力学环境响应分析[J]. 航天器环境工程, 2006, 23(2): 83-89. Xie Jiulin, Yang Song, Zhang Jungang. The Response Prediction of the Spacecraft under Acoustic Vibration Environment[J]. Spacecraft Environment Engineering, 2006, 23(2): 83-89. [15] 骆寰宇, 邓忠民, 孙兰等. 飞行器声振力学环境响应预示方法[J]. 战术导弹技术, 2012, (6): 22-27. Luo Huanyu, Deng Zhongmin, Sun Lan, et al. The Methods of the Response Prediction of Aircraft Under Acoustic Vibration Environment[J]. Tactical Missile Technology, 2012, (6): 22-27. [16] 孙树森. 基于统计能量法的潜射导弹振动噪声分析研究[D]. 硕士学位论文. 哈尔滨工业大学, 2011年. SunShusen. Vibration and Noise Analysis for Submarine-launched Missile on SEA[D]. Dissertation for the Master Degree. Harbin Institute of Technology, 2011. [17] 房桂祥. 喷流噪声引起的结构振动环境预示研究[J]. 强度与环境, 2006, 33(3): 7-10. Fang Guixiang. Foreshowing study of the vibration environment caused by engine jet noise[J]. Structure & Environment Engineering, 2006, 33(3): 7-10. [18] 陈强. 热噪环境下薄壁结构高频能量响应预示研究[D]. 博士学位论文. 东南大学, 2020年. Chen Qiang. High-frequency Energy Response Analysis of Thin-walled Structure under Thermal and Acoustic Load[D]. Dissertation for the PhD Degree. Southeast University, 2020. [19] 林毅. 基于能量有限元法的导弹舱体结构载荷环境预示研究[D]. 硕士学位论文. 哈尔滨工业大学, 2012年. Lin Yi. Research on Load Environmental Prediction for Missile Cabin Based on Energy Finite Element Analysis[D]. Dissertation for the Master Degree. Harbin Institute of Technology, 2012. [20] 于世甲. 基于模态能量法的声-固耦合响应分析方法研究[D]. 硕士学位论文. 东南大学, 2017年. Yu Shijia. Structural-acoustic Coupling Response Analysis Based on Modal Energy Method[D]. Dissertation for the PhD Degree. Southeast University, 2017. [21] 秦朝红, 任方, 韩丽等. 飞行器典型结构中频分析参数识别及建模技术研究[J]. 强度与环境, 2014, 41(5): 38-44. Qin Zhaohong, Ren Fang, Han Li, et al.Parameter identification and modeling method for mid-frequency environment prediction of typical structure[J]. Structure & Environment Engineering, 2014, 41(5): 38-44. [22] 秦朝红, 任方, 王英诚等. 复杂结构全频段声振综合响应分析[J]. 强度与环境, 2017, 41(6): 8-14. Qin Zhaohong, Ren Fang, Wang Yingcheng, et al. Vibro-acoustic analysis of complex structure in whole frequency band[J]. Structure & Environment Engineering, 2017, 41(6): 8-14. [23] 张鹏. 噪声环境下结构中高频动响应分析方法研究[D]. 硕士学位论文. 东南大学, 2017年. Zhang Peng. Vibro-Acoustic Analysis of Structure under Acoustic environment in the Mid-High Frequency Range[D]. Dissertation for the Master Degree. Southeast University, 2017. [24] 李凯. 航天舱段结构振动环境预示方法研究[D]. 硕士学位论文. 南京航空航天大学, 2016年. Li Kai. Research on Spacecraft Section Vibration Environment Prediction Methods[D]. Dissertation for the Master Degree. Nanjing University of Aeronautics and Astronautics, 2016. [25] 廖涛. 星箭结构的动力学建模方法与声-固耦合动响应分析研究[D]. 硕士学位论文. 东南大学, 2016年. Liao Tao. Dynamic Modeling and Vibration-Acoustic Response Analysis of Satellite-Rocket Coupling Structures[D]. Dissertation for the Master Degree. Southeast University, 2016. [26] 李凰立, 苏虹, 沈丹. 运载火箭整流罩脉动压力环境的数值模拟研究[J]. 导弹与航天运载技术, 2019, (4): 11-17. Li Huangli, Su Hong, Shen Dan. Fluctuating Pressure Numerical Simulation on Launch Vehicle Fairing[J]. Missiles and Space Vehicles, 2019, (4): 11-17. [27] 刘振皓, 任方. 航天飞行器脉动压力数值计算方法综述[J]. 强度与环境, 2013, 40(6): 45-50. Liu Zhenhao, Ren Fang. Review on numerical computation of spacecraft pressure fluctuations[J]. Structure & Environment Engineering, 2013, 40(6): 45-50. [28] 洪杰, 高金海, 马艳红等. 球头锥柱再入飞行器的动力学环境预示[J]. 北京航空航天大学学报, 2008, 34(8): 878-882. Hong Jie, Gao Jinhai, Ma Yanhong, et al. Foreshowing study of dynamic environment on the sphere-cone-cylinder reentry vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 878-882. [29] 任淑杰, 张收运, 闫桂荣. 基于RANS/NLAS的火箭跨声速脉动压力环境预示[J]. 固体火箭技术, 2011, 34(4): 418-422. Ren Shujie, Zhang Shouyun, Yan Guirong. A prediction of fluctuation pressure conditions with transonic rocket by RANS/NLAS method[J]. Journal of Solid Rocket Technology, 2011, 34(4): 418-422. [30] 盖晓男,于开平. 飞行器跨声速段肩部脉动压力等效预示方法[J]. 噪声与振动控制, 2020, 40(1): 1-4, 45. Gai Xiaonan,Yu Kaiping. An Equivalent Prediction Method for Shoulder Pulsating Pressure of Flight Vehicle in Transonic Phase[J]. Noise and Vibration Control, 2020, 40(1): 1-4, 45. [31] 马世伟,蒋华兵. 飞行器绕流流场脉动压力环境预示方法探讨[J]. 装备环境工程, 2021, 18(3): 14-22. Ma Shiwei, Jiang Huabing. Discussion on Prediction Methods of Fluctuating Pressure Environments of Flow Fields Surrounding the Aircraft[J]. Equipment Environmental Engineering, 2021, 18(3): 14-22. [32] 徐敏, 张宁川. 基于气动(气动噪声)/结构耦合仿真研究[J]. 强度与环境, 2012, 39(1): 12-17. Xu Min, Zhang Ningchuan. Based on Aerodynamic/aeroacoustic/structure coupling simulation study [J]. Structure & Environment Engineering, 2012, 39(1): 12-17. [33] 李春丽, 石先杰. 再入飞行器振动环境工程预示方法[J]. 装备环境工程, 2021, 18(3): 9-13. Li Chunli, Shi Xianjie. Engineering Prediction Method of the Vibration Environment for Re-entry Vehicle[J]. Equipment Environmental Engineering, 2021, 18(3): 9-13. [34] 王亮, 张妍, 周晓丽等. 战术导弹飞行主动段力学环境快速预示方法[J]. 强度与环境, 2015, 42(5): 45-48. Wang Liang, Zhang Yan, Zhou Xiaoli, etal.Fast dynamic environment prediction technology of tactics missile in boost phase[J]. Structure & Environment Engineering, 2015, 42(5): 45-48. [35] GJB 150.17A—2009, 军用装备实验室环境试验方法第17部分:噪声试验[S]. GJB 150.17A-2009, Laboratory Environmental Test Methods for Military Equipment-part 17: Noise Test [S]. [36] Q/Y 237-2020, 导弹武器系统力学环境条件设计规范[S]. Q/Y 237-2020, Standard for Design of Mechanical Environmental conditions of Missile weapon system [S].

PDF(2034 KB)

Accesses

Citation

Detail

段落导航
相关文章

/