飞机着陆数值仿真及机场道面动载特性研究

孟宪锋1,2,罗萌3,4,江辉3,戴鹏1,2,高学奎1,2,赵星燕3,季金文1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 308-318.

PDF(4007 KB)
PDF(4007 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 308-318.
论文

飞机着陆数值仿真及机场道面动载特性研究

  • 孟宪锋1,2,罗萌3,4,江辉3,戴鹏1,2,高学奎1,2,赵星燕3,季金文1,2
作者信息 +

Numerical simulation of aircraft landing and dynamic load characteristics of airport pavement

  • MENG Xianfeng1,2, LUO Meng3,4, JIANG Hui3, DAI Peng1,2, GAO Xuekui1,2, ZHAO Xingyan3, JI Jinwen1,2
Author information +
文章历史 +

摘要

为研究飞机着陆滑跑过程民用机场道面动荷载特性,以Boeing737-800机型为例,基于动力学仿真软件VI-Aircraft,建立了机身、起落架及轮胎三维数值仿真模型,根据某机场道面实测平整度数据创建道面仿真模型,形成了一套考虑气动力变化特性的飞机着陆冲击仿真方法,并通过相关起落架系统落震试验以及飞机-地面运动学理论解析两方面验证了仿真方法的可靠性。此外,系统讨论了各类着陆状态参数对道面动载特性的影响,明确了不同着陆状态参数影响下道面动载系数量化取值范围,揭示了各着陆状态参数对道面动载响应的影响规律及影响机理。研究结果表明:随着陆质量、接地速度及滚转角增大,道面动载响应显著增强;随着陆航向速度增大,道面动载响应明显减小;而随俯仰角增大,道面动载响应整体呈现波动减小的趋势。飞机着陆过程中道面动载系数敏感性因素从大到小依次为:航向速度、接地速度、着陆质量、滚转角与俯仰角,充分考虑各着陆状态参数影响,一般情况下道面动载系数DIM分布区间为1.18~1.80。研究成果可进一步拓展用于飞机着陆跑道桥的分析研究。

Abstract

In order to study the dynamic load characteristics of civil airport pavement during aircraft landing and taxiing, taking the Boeing 737-800 aircraft as an example, a three-dimensional numerical simulation model of the fuselage, landing gear and tires was established, based on the dynamic simulation software VI-Aircraft. The pavement simulation model was created according to the measured roughness data of an airport pavement, forming a set of simulation methods for aircraft landing impact considering aerodynamic variation characteristics. The reliability of the simulation method was verified by two methods of landing gear system drop test and aircraft ground kinematics theory analysis. In addition, the influence of various landing state parameters on the dynamic load characteristics of the pavement was systematically discussed, the quantitative value of the dynamic load coefficient of the pavement under the influence of different landing state parameters was clarified, and the influence rule and mechanism of various landing state parameters on the dynamic load response of the pavement were revealed. The results show that with the increase of landing mass, descending speed and roll angle, the dynamic load response of pavement is significantly enhanced. With the increase of heading speed, the dynamic load response of pavement decreases significantly and with the increase of pitch angle, the dynamic load response of pavement shows a trend of decreasing fluctuation. In the process of aircraft landing, the sensitivity factors of the dynamic load coefficient of the pavement from large to small are: heading speed, descending speed, landing mass, roll angle and pitch angle. In full consideration of the impact of various landing state parameters, the distribution range of the dynamic load coefficient DIM of the pavement is 1.18~1.80 in general The research results can be further extended to the analysis and research of aircraft landing on runway bridge.

关键词

机场道面 / 飞机着陆滑跑 / 道面动载系数 / 数值仿真

Key words

airport pavement / aircraft landing and taxiing / pavement dynamic load coefficient / numerical simulation

引用本文

导出引用
孟宪锋1,2,罗萌3,4,江辉3,戴鹏1,2,高学奎1,2,赵星燕3,季金文1,2. 飞机着陆数值仿真及机场道面动载特性研究[J]. 振动与冲击, 2024, 43(1): 308-318
MENG Xianfeng1,2, LUO Meng3,4, JIANG Hui3, DAI Peng1,2, GAO Xuekui1,2, ZHAO Xingyan3, JI Jinwen1,2. Numerical simulation of aircraft landing and dynamic load characteristics of airport pavement[J]. Journal of Vibration and Shock, 2024, 43(1): 308-318

参考文献

[1] 翁兴中.机场道面设计[M]. 北京:人民交通出版社,2007. WENG Xingzhong. Airport pavement design [M]. Beijing: China Communications Press, 2007. [2] MH/T5010-2017. 民用机场沥青道面设计规范[S]. 北京:中国民航出版社,2017. MH/T5010-2017. Specifications for asphalt pavement design of civil airports[S]. Beijing: Civil Aviation Press of China, 2017. [3] MH/T5004-2010. 民用机场水泥混凝土道面设计规范[S]. 北京:中国民航出版社,2010. MH/T5004-2010. Specifications for airport cement concret pavement design [S]. Beijing: Civil Aviation Press of China, 2010. [4] AC150/5320-6F. Airport pavement design and evaluation [S]. U.S.A. : Department of Transportation Advisory Circular, 2016. [5] 许金余,赵国藩. 机场水泥砼道面动载系数的研究[J]. 大连理工大学学报,1997,37(3):125-12. XU Jinyu, ZHAO Guofan. Study on dynamic load coefficient of airfield’s cement concrete pavement[J]. Journal of Dalian University of Technology, 1997, 37(3): 125-12. [6] 许金余,邓子辰. 机场刚性道面动力分析[M]. 西安:西北工业大学出版社,2002. XU Jinyu, DENG Zichen. Dynamic analysis of airfield rigid pavement[M]. Xi’an: Northwestern Polytechnical University Press, 2002. [7] 汤阿妮,郭正旺,赵华. 大型飞机多轮多支柱起落架载荷飞行研究[J]. 南京航空航天大学学报,2021,53(2):299-305. TANG Ani, GUO Zhengwang, ZHAO Hua. Flight research on multi⁃wheel and multi⁃strut landing gear loads[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(2): 299-305. [8] 牟让科,胡孟权. 飞机非对称着陆和滑跑载荷分析[J]. 机械科学与技术,2000,19(S1):72-74. MOU Rangke, HU Mengquan. Analysis of the asymmetric landing and taxiing loads of aircraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2000, 19(S1): 72-74. [9] 崔云化,岑国平,梁磊. 新型飞机着陆动载特性研究[J]. 计算机仿真,2020,37(4):15-21. CUI Yunhua, CEN Guoping, LIANG Lei. Study on the characteristics dynamic load of new aircraft landing[J]. Computer Integrated Manufacturing Systems, 2020, 37(4): 15-21. [10] Shi Xingang, Cai Liangcai, Wang Guanhu, et al. A new aircraft taxiing model based on filtering white noise method[J]. IEEE Access, 2020, PP(99): 1-1. [11] 罗昆升,赵跃堂,陈云鹤,等. 飞机在预应力桥梁上降落过程的数值模拟分析[J]. 振动与冲击,2010,29(01):188-192+246. LUO Kunsheng, ZHAO Yuetang, CHENG Yunhe, et al. Numerical simulation analysis of aircraft landing on prestressed bridge[J]. Journal of Vibration and Shock, 2010, 29(01): 188-192+246. [12] 梁磊,顾强康,刘国栋,等. 基于ADAMS仿真确定飞机着陆道面动荷载[J]. 西南交通大学学报,2012,47(3):502-508. LIANG Lei, GU Qiangkang, LIU Guodong, et al. Using ADAMS to assess dynamic load of pavement during aircraft landing[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 502-508. [13] 中国民用航空局机场司. 飞机荷载桥梁在机场工程中的应用[R]. IB-CA-2019-02,北京:中国民用航空局,2019. Airport Department of Civil Aviation Administration of China. Application of aircraft loaded bridge in airport engineering[R]. IB-CA-2019-02, Beijing: Civil Aviation Administration of China, 2019. [14] 朱敏. 飞机地面牵引载荷分析[D]. 南京:南京航空航天大学,2013. ZHU Min. The analysis of the plane ground traction load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. [15] The Boeing Company. 737 airplane characteristics for airport planning[R]. Chicago: Boeing Commercial Airplanes, 2013. [16] 中国民用航空局. 运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民航出版社,2016:56-60. Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Press of China, 2016: 55-60. [17] 魏小辉. 飞机起落架着陆动力学分析及减震技术研究[D]. 南京:南京航空航天大学,2005. WEI Xiaohui. Dynamic analysis of aircraft landing impact and vibration attenuating techniques[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005. [18] 刘春梅. 考虑长轴距效应的道面平整度对飞机滑行振动的影响[D]. 天津:中国民航大学,2020. LIU Chunmei. The influence of pavement roughness considering long-wheelbase effect on taxing aircraft vibration[D]. Tianjing: Civil Aviation University of China, 2020. [19] 凌道盛,盛文军,黄博,等. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版),2021,55(09):1684-1693. LING Daosheng, Sheng Wenjun, Huang Bo, et al. Influence of pavement unidirectional constraint on aircraft vibration response[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(09):1684-1693. [20] LIU Shifu, LING Jiangming, TIAN Yu, et al. Assessment of aircraft landing gear cumulative stroke to develop a new runway roughness evaluation index[J]. International Journal of Pavement Engineering, 2021, (4): 1-12.

PDF(4007 KB)

Accesses

Citation

Detail

段落导航
相关文章

/