采用ECC替代混凝土可以提高结构在偶然荷载作用下的抗连续倒塌性能,但在悬链线大变形阶段钢筋与ECC间可能会出现粘结滑移破坏。本文基于霍普金森压杆(SHPB)试验装置,进行了钢筋与ECC的动态粘结滑移性能试验,分析了ECC强度等级、应变率、钢筋直径对极限粘结强度、刚度和滑移量的影响规律,获得了高应变率下钢筋与ECC的平均粘结滑移曲线,得到其粘结滑移破坏模式。并与静态粘结滑移试验进行对比,得到了动态粘结强度增强因子DIF。进一步,通过钢筋开槽内贴应变片法,获得不同锚固位置的粘结应力及相对滑移的分布规律,提出粘结位置函数。最后,根据试验结果得到钢筋与ECC平均粘结滑移本构,进而乘以粘结位置函数得到考虑锚固位置影响的动态粘结滑移本构,为ECC结构构件设计及有限元分析提供试验依据和理论参考。
Abstract
The use of ECC instead of concrete can improve the progressive collapse resistance of structures under accidental loads but bond-slip may occur between reinforcement and ECC during the stage of large deformation of the catenary. In this paper, based on the Hopkinson Pressure Bar (SHPB) test device, dynamic bond-slip behavior of steel bar and ECC is tested. The influence of strength grade, strain rate and diameter of steel bar on ultimate bond strength, stiffness and slip are analyzed. Mean bond-slip curves of steel bar and ECC under high strain rate are obtained. The dynamic increase factor DIF is calculated by comparing dynamic bond-slip curves with static bond-slip curves. Further, the distribution of bond stress and relative slip at different anchorage positions are obtained by placing strain gauge in the slot of reinforcement, and the bond position function is proposed. Finally, according to the test results, the average bond slip constitutive force of rebar and ECC is obtained, and then the dynamic bond-slip constitutive force considering the influence of anchorage position is obtained by multiplying the bond position function, which provides experimental basis and theoretical reference for ECC structural member design and finite element analysis.
关键词
高应变率荷载 /
钢筋-ECC粘结滑移 /
霍普金森压杆(SHPB)试验 /
位置函数 /
粘结滑移本构关系
{{custom_keyword}} /
Key words
high strain rate load /
rebar-ECC bond slip /
Hopkinson Press Bar (SHPB) test /
position function /
bond- slip constitutive relation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姜天华,万聪聪,颜斌.BFRP筋与钢-PVA混杂ECC粘结性能[J/OL].复合材料学报:1-16[2022-12-07]. DOI:10.13801/j.cnki.fhclxb.20220819.004. JIANG Tianhua, WAN Congcong, YAN Bin. Adhesion propertoes of BFRP reinforcement and steel-PVA hybrid ECC [J/OL]. Acta Materiae Compositae Sinica: 1-16 [2022-12-07].DOI:10.13801/j.cnki.fhclxb. 20220819.004. [2] Siong Wee Lee, Shao-Bo Kang, Kang Hai Tan, et al. Experimental and analytical investigation on bond-slip behaviour of deformed bars embedded in engineered cementitious composites [J]. Construction & Building Materials, 2016, 127:494-503. [3] 宋国杰. 不同加载速率下钢筋再生混凝土粘结滑移性能试验研究[D].北京:北方工业大学, 2019. SONG Guojie.Experimental study on bond slip behavior of reinforced recycled concrete under different loading rates [D]. Beijing: North China University of Technology, 2019. [4] Long X , Wang C Y , Zhao P Z , et al. Bond strength of steel reinforcement under different loading rates [J]. Construction and Building Materials, 2020, 238. doi: 10.1016/j.conbuildmat. 2019.117749. [5] 付应乾, 余效儒, 董新龙,等. 应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究[J]. 爆炸与冲击, 2019, 39(06): 85-93. FU Yingqian, YU Xiaoru, DONG Xinlong, et al. An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates[J]. Explosion And Shock Waves, 2019, 39(6): 064102. doi: 10.11883/bzycj-2018-0513 [6] 周继凯,沈大伟,潘杨.高应力率下混凝土动态黏结性能试验技术与数据处理方法[J].振动与冲击,2017,36(18):43-48+90. DOI:10.13465/j.cnki.jvs.2017.18.007. ZHOU Jikai, SHEN Dawei, PAN Yang. Test technique and data processing method for the dynamic bond behavior between steel bar and concrete under high stress rates [J]. Journal of Vibration and Shock, 2017, 36(18):43-48+90. DOI: 10.13465/j.cnki.jvs.2017.18.007. [7] 徐世烺,王洪昌.超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J].工程力学,2008,25(11):53-61. XU Shiliang, WANG Hongchang. Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar [J]. Engineering Mechanics, 2008,25(11):53-61. [8] 杨海峰,邓志恒,李雪良,等.再生混凝土-钢筋黏结滑移本构关系研究[J].建筑材料学报,2013,16(03):429-436. YANG Haifeng, DENG Zhiheng, LI Xueliang, et al. Experimental study on bond-slip relationship between recycled concrete and steel bar [J]. Journal of building materials, 2013, 16(03):429-436. [9] 赵羽习,金伟良.随不同位置变化的钢筋与混凝土的粘结本构关系[J].浙江大学学报(工学版),2002,36(1):1—6. ZHAO Yuxi, JIN Weiliang. Study on the bond stress-slip relationship variation with the position [J]. Journal of Zhejiang University( Engineering Science),2002,36(1):1-6. [10] Gray III G T, Blumenthal W R. Split-Hopkinson pressure bar testing of soft materials [J]. ASM Hands-book: Mechanical Testing and Evaluation (ASM International), 2000, 8: 488-496. [11] E. Vos. Influence of Loading Rate and Radical Pressure on Bond in Reinforced Concrete [D]. Delft University, 1983. [12] 杜超超,温森,孔庆梅.一维动静组合加载下复合岩样动态力学特性试验研究[J].振动与冲击,2021,40(21):168-178+206. DOI:10.13465/j.cnki.jvs.2021.21.023. DU Chaochao, WEN Sen, KONG Qingmei. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading [J]. Journal of Vibration and Shock, 2021, 40(21):168-178+206. DOI: 10.13465/ j.cnki.jvs.2021.21.023. [13] 朱云云. 高应变率下硫酸盐侵蚀混凝土的动态力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019. ZHU Yunyun. Study on dynamic properties of sulfate attacked concrete under high strain rate [D].Harbin: Harbin Institute of Technology, 2019. [14] 洪小健, 张誉.粘结滑移试验中的粘结应力的拟合方式[J]. 结构工程师, 2000(3): 41-46. HONG Xiaojian, ZHANG Yu. The fitting method of the smooth bond stress in the bond-ship test [J]. Structural engineers, 2000(3): 41-46. [15] 张伟平, 张誉. 锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J]. 土木工程学报, 2001, 34(5): 40-44. ZHANG Weiping, ZHANG Yu. Study on bond-slip constitutive relation of reinforced concrete after rust expansion and cracking[J]. China Civil Engineering Journal, 2001, 34(5): 40-44.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}