舱段主动隔振系统作动器配置优化

巫頔1, 谢溪凌 2, 张志谊1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 91-98.

PDF(1818 KB)
PDF(1818 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 91-98.
论文

舱段主动隔振系统作动器配置优化

  • 巫頔1, 谢溪凌 2, 张志谊1,2
作者信息 +

Allocation optimization of actuators in cabin shell active vibration isolation system

  • WU Di1, XIE Xiling2, ZHANG Zhiyi1,2
Author information +
文章历史 +

摘要

针对舱段主动隔振系统中作动器配置优化问题,给出一种优化模型和方法,通过数值计算进行方法验证。文中首先建立了多通道舱段主动隔振系统的动力学模型,然后将作动器配置优化转换为约束0-1非线性规划问题,以系统监测点响应为优化目标函数,作动器启用状态为自变量,最后采用教与学(TLBO)优化算法寻找最优配置。仿真计算结果表明,对于不同的激励,多通道主动隔振系统的最优配置不同,即存在对应给定激励下抑制壳体振动与声辐射的最优配置。

Abstract

An approach is proposed to search the minimum number of actuators for an active vibration isolation platform-cabin shell system. Based on the established dynamic model of the multi-channel active vibration isolation system, the optimal allocation of actuators in this approach is described as a 0-1 nonlinear programming problem, in which the active/silent state of the actuators are independent variables and the objective function is constructed from the system responses. The teaching-learning based optimization algorithm (TLBO) is used to find the optimal actuator allocation. The optimization is carried out to verify the effectiveness of the proposed method, and the numerical results show that the vibration and acoustic radiation of the shell can be suppressed by part of the actuators in a specific excitation.

关键词

主动振动控制 / 教与学算法(TLBO) / 配置优化

Key words

Active vibration control / Teaching-learning based optimization (TLBO) / Allocation optimization

引用本文

导出引用
巫頔1, 谢溪凌 2, 张志谊1,2. 舱段主动隔振系统作动器配置优化[J]. 振动与冲击, 2024, 43(1): 91-98
WU Di1, XIE Xiling2, ZHANG Zhiyi1,2. Allocation optimization of actuators in cabin shell active vibration isolation system[J]. Journal of Vibration and Shock, 2024, 43(1): 91-98

参考文献

[1] Daley S, Zazas I, Hatonen J. Harmonic control of a ‘smart spring’ machinery vibration isolation system [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2008, 222(2): 109-119. [2] Yang T, Sun Y, Zhou L, et al. Practical demonstration of a large-scale active vibration isolation system[J]. Case Studies in Mechanical Systems and Signal Processing, 2015, 1: 32-37. [3] Ma X, Jin G, Liu G. Active structural acoustic control of an elastic cylindrical shell coupled to a two-stage vibration isolation system[J]. International Journal of Mechanical Sciences, 2014, 79: 182-194. [4] 任明可. 基于多轴控制的动力设备主被动隔振方法研究[D]. 上海: 上海交通大学, 2022. [5] Hamdan A, Nayfeh A. Measures of modal controllability and observability for the first-and second-order linear systems[J]. Journal of Guidance Control and Dynamics, 1989, 12(3): 421-428. [6] Bruant I, Proslier L. Optimal location of actuators and sensors in active vibration control[J]. Journal of Intelligent Material Systems and Structures. 2005, 16: 197-206. [7] Ramesh K, Narayanan S. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs[J]. Smart Material and Structures, 2008, 17(5): 055008. [8] Güney M, Eskinat E. Optimal actuator and sensor placement in flexible structures using closed-loop criteria[J]. Journal of Sound and Vibration, 2008, 312(1-2): 210-233. [9] Wang Z, Li T. Optimal piezoelectric sensor/actuator placement of cable net structures using H2-norm measures[J]. Journal of Vibration and Control, 2014, 20(8): 1257-1268. [10] Ding R, Ding C, Xu Y, et al. An optimal sensor/actuator placement method for flexible structures considering spatially varying disturbances[J]. Journal of Vibration and Control, 2021, 0(0): 1-11. [11] Liu W, Hou Z, Demetriou M. A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial 𝐻2 measures[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 881-895. [12] 陆洋, 顾仲权, 凌爱民. 直升机结构响应主动控制中传感器优选问题研究[J]. 振动与冲击, 2011, 30(6):58-61. Lu Yang, Gu Zhongqian, Ling Aimin. Optimization selection of sensors in active control of structural response for helicopter[J]. Journal of Vibration and Shock, 2011, 30(6):58-61. [13] 周刘彬, 刘记心, 杨铁军. 多线谱振动噪声主动控制中误差传感器的优化配置[J]. 振动与冲击, 2017, 36(10):175-181. Zhou Liubin, Liu Jixin, Yang Tiejun. Optimal allocation of error sensors in the multi-curve spectrum active vibration and sound control[J]. Journal of Vibration and Shock, 2017, 36(10):175-181. [14] Chen D, Lu R, Zou F. Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization[J]. Neurocomputing, 2016, 173(3): 1096-1111. [15] Xu Y, Yang T, Fuller C, et al. A theoretical analysis on the active structural acoustical control of a vibration isolation system with a coupled plate-shell foundation[J]. International Journal of Mechanical Sciences, 2020, 170: 105334. [16] Rao R, Savsani V, Vakharia D. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315. [17] 曹丙花, 郑德栋, 范孟豹等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01):1-10. Cao Binghua, Zheng Dedong, Fan Mengbao, et al. Efficient and reliable thickness measurement method for multilayer coatings based on terahertz time-domain spectroscopy technology[J]. Acta Optica Sinica, 2022, 42(01):1-10. [18] Williams W, Parke N, Moran D, et al. Acoustic radiation from a Finite cylinder[J]. The Journal of the Acoustical Society of America, 1964, 36(12): 2316-2322. [19] 孙瑶. 弹性基础隔振系统水下声辐射及其主动控制仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

PDF(1818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/