基于分形理论的浮环密封端面法向接触刚度仿真研究

刘勇1, 郭昊东1, 张青1, 闫方超2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 103-110.

PDF(2490 KB)
PDF(2490 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 103-110.
论文

基于分形理论的浮环密封端面法向接触刚度仿真研究

  • 刘勇1,郭昊东1,张青1,闫方超2
作者信息 +

Simulation research on normal stiffness of floating ring seal end face based on the fractal theory

  • LIU Yong1,GUO Haodong1,ZHANG Qing1,YAN Fangchao2
Author information +
文章历史 +

摘要

浮环密封是现代航空发动机常用的密封形式之一,浮环端面的接触刚度对浮环密封辅助密封面的摩擦磨损性能有重要影响。本文在分形理论的基础上,基于有限元方法建立了一种新的法向接触刚度计算模型。之后通过该模型计算浮环密封端面法向接触刚度,得到了浮环密封端面法向接触刚度随压力与粗糙度的变化规律。计算结果表明:求得的法向接触刚度与粗糙表面接触试验结果吻合较好,最大相对误差不超过4%;浮环密封端面法向接触刚度随压力的增大而增加,随接触面粗糙度的增大而减小。该方法为浮环密封端面法向接触刚度的计算提供了一种新的思路。

Abstract

Floating ring seals are one of the commonly used sealing forms for modern aero-engines. The contact stiffness of the end face of the floating ring has an important effect on the friction and wear performance of the auxiliary sealing surface of the floating ring seal. In this paper, a new calculation model of normal contact stiffness is established on the basis of fractal model. And the normal contact stiffness of floating ring seal end face is calculated by this model. The change law of the normal contact stiffness of the floating ring seal end face with pressure and roughness is obtained. The calculation results show that the normal contact stiffness obtained by the proposed method is in good agreement with the experimental results, and the maximum relative error does not exceed 4%; the normal contact stiffness of the floating ring seal end face increases with the increase of pressure, and decreases with the increase of the roughness of the contact surface. This method provides a new method for the calculation of the normal contact stiffness of the floating ring seal end face.

关键词

航空发动机 / 浮环密封 / 粗糙表面 / 法向接触刚度 / 分形理论 / 接触力学

Key words

Aircraft engine / Floating ring seal / Rough surfaces / Normal contact stiffness / Fractal theory / Contact mechanics;

引用本文

导出引用
刘勇1, 郭昊东1, 张青1, 闫方超2. 基于分形理论的浮环密封端面法向接触刚度仿真研究[J]. 振动与冲击, 2024, 43(16): 103-110
LIU Yong1, GUO Haodong1, ZHANG Qing1, YAN Fangchao2. Simulation research on normal stiffness of floating ring seal end face based on the fractal theory[J]. Journal of Vibration and Shock, 2024, 43(16): 103-110

参考文献

[1] 张志敏,丁雪兴,张兰霞,等. 浮环密封端面分形磨损预估模型及数值分析[J].化工学报, 2022, 73(12): 5526-5536. Zhang Zhimin, DING Xuexing, ZHANG Lanxia, et al. Fractal wear prediction model and numerical analysis of floating ring seal face [J]. CIESC Journal, 2022, 73(12): 5526-5536. [2] 胡广阳. 航空发动机密封技术应用研究[J].航空发动机, 2012, 38(3). Hu Guangyang. Application Research of Seal Technologies for Aeroengine[J]. Aeroengine, 2012, 38(3). [3] 夏鹏,刘占生. 浮环密封结构弹性对间隙泄漏量和动力学系数的影响[J].推进技术, 2017, 38(12):2815-2821. Xia Peng, Liu Zhansheng. Effects of Structure Elasticity on Leakage and Rotordynamic Coefficients of Floating Ring Seals[J]. JOURNAL OF PROPULSION TECHNOLOGY, 2017, 38(12):2815-2821. [4] 赵欢,姜金裕,孙丹等. 浅槽动压整体式浮环密封静力与动力特性数值研究[J].航空动力学报, 2023. ZhaoHuan, JiangJinyu, SunDan, et al. Numerical Study on Static and Dynamic Characteristics of an Integral Floating Ring Seal with Shallow Groove Dynamic Pressure[J]. Journal of Aerospace Power, 2023. [5] 姜金裕, 孙丹, 赵欢等. 基于流固热耦合的浮环密封力学特性数值研究[J].润滑与密封, 2023,48(4):30-39. JiangJinyu, SunDan, ZhaoHuan, et al. Numerical Study on Mechanical Properties of Floating Ring Seal Based on Fluid-Solid Thermal Coupling[J]. LUBRICATION ENGINEERING, 2023, 48(4):30-39. [6] 力宁, 江平, 翁泽文, 等. 航空发动机浮环密封上浮性能试验研究[J].润滑与密封, 2020, 45(11): 143-148. Li N, Jiang P, Weng Z W, et al. Experimental study on floating performance of floating ring seals used in aero engine[J]. Lubrication Engineering, 2020, 45(11): 143-148. [7] 马也, 王庆锋, 施任杰, 等. 航空发动机气膜浮环密封上浮性能研究[J].润滑与密封, 2021, 46(1): 38-44, 50. Ma Y, Wang Q F, Shi R J, et al. Research on floating performance of aeroengine air film floating ring seal[J]. Lubrication Engineering, 2021, 46(1): 38-44, 50. [8] 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J].化工学报, 2021, 72(8): 4267-4278.Lu J J, Zhang W, Ma H. Floating performance of cylindrical microgroove gas floating seal based on F-K slip flow model[J]. CIESC Journal, 2021, 72(8): 4267-4278. [9] 翟霄,杨小成,陈金林等. 干气密封摩擦界面弹塑性接触刚度模型[J].振动与冲击, 2023,42(10):166-171 Di Xiao, Yang Xiaocheng, Chen Jinlin, et al. Elastic-plastic contact stiffness model of dry gas seal friction interface[J]. JOURNAL OF VIBRATION AND SHOCK, 2023, 48(4):30-39. [10] 赵玉霞. 基于分形理论的浮环密封摩擦学特性研究[D].兰州:兰州理工大学,2022. ZhaoYuxia. Study on Tribological Characteristics of Floating Ring Seals Based on Fractal Theory[D]. Lanzhou: Lanzhou University of Technology,2022. [11] Greenwood. J. A. Contact of nominally flat surfaces[J]. Proc.r.soc.a, 1966, vol. 295,. [12] Zhao Guang, Xiong Zhi-liang, Gao Wen-dong, et al. A statistical model of elastic-plastic contact between rough surfaces[J]. Transactions of the Canadian Society for Mechanical Engineering, 2019, vol. 43, no. 1, pp. 38-46. [13] Jackson R. L, Streator J. L, A multi-scale model for contact between rough surfaces[J]. Wear, vol. 261, no. 11, 2006, pp. 1337-1347. [14] Chen Z Y, Liu Y, Zhou P. A novel method to identify the scaling region of rough surface profile[J]. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 2019, 27(2): 1950011. [15] 赵永胜,牛娜娜,杨聪彬,等.基于多尺度下塑性指数模型的结合面接触刚度计算方法[J].振动与冲击, 2022, 41(3): 115-122+164. ZHAO Yongsheng, NIU Nana, YANG Congbing, et al. Calculation method for contact stiffness of contact surface based on multi-scale plastic index model[J]. Journal of Vibration and Shock, 2022, 41(3): 115-122+164. [16] SONG J, Wang W, LANG Y, et al. Double Rough Surface Contact Model and Finite Element Simulation based on Fractal Theory[J]. Journal of Physics: Conference Series, 2021, vol. 1877, no. 1, pp. 012016. [17] Majumdar A, Bhushan B. Fractal Model of Elastic-Plastic Contact Between Rough Surfaces[J]. Journal of Tribology, 1991 vol. 113, no. 1, pp. 1-11. [18] Buczkowski R, Kleiber M. Statistical models of rough surfaces for finite element 3D-contact analysis[J]. Archives of Computational Methods in Engineering, 2009, 16(4): 399-424. [19] 张学良,陈永会,温淑花,等.考虑弹塑性变形机制的结合面法向接触刚度建模[J].振动工程学报,2015, 28(1): 91-99. ZAHNG Xueliang, CHEN Yonghui, WEN Shuhua, et al. The model of normal contact stiffness of joint interfaces incorporating elastoplastic deformation mechanism[J]. Journal of Vibration Engineering, 2015, 28(1): 91-99. [20] 陈建江,原园,徐颖强.粗糙表面的加卸载分形接触解析模型[J].西安交通大学学报, 2018, 52(3): 98-110. CHEN Jianjiang, YUAN Yuan, XU Yingqiang. An analytical model of loading-unloading contact between rough surfaces based on Fractal theory[J]. Journal of Xi’an Jiaotong University, 2018, 52(3): 98-110. [21] 王颜辉,张学良,温淑花,等.机械结合面法向接触刚度分形理论模型[J].机械强度, 2020, 42(3), 648-653. WANG Yanhui, ZHANG Xueliang, WEN Shuhua, et al. Fractal theoretical model of normal contact stiffness of mechanical joint interfaces[J]. Journal of Mechanical Strength, 2020, 42(3), 648-653. [22] 赵广, 王永泉, 赵向阳,等.盘鼓螺栓连接结构接触刚度建模与应用检验[J].航空动力学报, 2022,37(1): 76-86. ZHAO Guang, WANG Yongquan, ZHAO Xiangyang, et al. Modeling and application test of contact stiffness of bolt connection structure of disk and drum[J]. Journal of Aerospace Power, 2022,37(1): 76-86. [23] ZHAO Jiazhe, WANG Yanrong, LUO Ynabin, et al. A vibration damping analysis method of turbine blade shroud dampers based on a given eigen-mode[C]. Proceedings of the ASME 2018 International Design Engineering. Quebec, Canada: ASME, 2018:1-11 [24] 陈璐璐,张大义,文敏,等.带凸肩风扇叶片振动特性及设计方法研究[J].推进技术, 2015, 36(9): 1389-1394. CHEN Lulu, ZHANG Dayi, WEN Ming, et al. Dynamical effects of shrouds on fan blade vibration and its corresponding design method[J]. Journal of Propulsion Technology, 2015, 36(9): 1389-1394. [25] 占旺龙,李卫,黄平,基于Iwan模型的接合面切向响应建模[J].力学学报, 2020, 52(2): 462-471. ZHAN Wanglong, LI Wei, HUANG Ping. Tangential response modeling of joint surface based on Iwan model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 462-471. [26] Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces[J]. Journal of Applied Physics, 1998, vol. 84, no. 7, pp. 3617-3624. [27] 嵇正波.基于逾渗理论的接触式机械密封界面泄漏机制研究[D].南京:南京林业大学,2018. JI Zhengbo. Research on interfacial leakage mechanism of contact mechanical seal based on percolation theory[D]. Nanjing: Nanjing Forestry University, 2018. [28] Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633. [29] LIU Yong, GUO Haodong, CHEN Zhiying. A fractal contact model for rough surfaces considering the variation of critical asperity levels[J]. Advances in Materials Science and Engineering, 2022. [30] 田红亮,钟先友,秦红玲,等.依据各向异性分形几何理论的固定结合部法向接触力学模型[J].机械工程学报. 2013 49(21): 108-122. TIAN Hongliang, ZHONG Xianyou, QIN Hongling, et al. Normal contact mechanics model of fixed joint interface adopting anisotropic fractal geometrical theory[J]. Journal of Mechanical Engineering, 2013 49(21): 108-122. [31] 杨红平,傅卫平,王雯,等.基于分形几何与接触力学理论的结合面法向接触刚度计算模型[J].机械工程学报, 2013, 49(1): 102-107. YANG Hongping, FU Weiping, WANG Wen. Calculation model of the normal contact stiffness of joints based on the fractal geometry and contact theory[J]. Journal of Mechanical Engineering, 2013, 49(1): 102-107.

PDF(2490 KB)

Accesses

Citation

Detail

段落导航
相关文章

/