由于温度荷载等环境因素的综合作用,大跨度高铁桥梁的复杂变形使得桥上轨道不平顺控制成为难题。鉴于温度变形是影响桥梁垂向变形的最关键因素,为厘清千米跨度高铁桥梁的桥梁温度变形与实际轨道变形关系,方便养护维修人员快速测算线路轨道不平顺实际情况,提出了小波重构-凝聚层次聚类算法来确定不同温度条件下桥梁温度变形。首先,以我国某千米跨度高铁斜拉桥不同温度条件下的轨道不平顺静态检测数据作为样本函数,采用小波变换进行时频特征分析,得到了各温度条件下的桥梁变形;其次,通过凝聚层次聚类分析将不同温度下的桥梁温度变形分为4类,确定了以10阶多项式拟合桥梁温度变形的各项拟合系数;最后,提出实际轨道不平顺即为实测垂向偏差数据与拟合桥梁温度变形间的差值,并对此进行了相关性验证。结果表明:提出的实际轨道不平顺与实测轨道不平顺数据在现行规范要求的10m中点弦测值、30m矢距差值与60m中点弦测值的时域相关性分别介于0.9980~0.9995、0.9860~0.9966、0.9123~0.9568,且时域波形基本吻合;频域上,不同测量结果频谱图上各频率对应谱密度值基本相同,相干函数在各频率上均介于0.9~1之间,实测结果与拟合结果具有极强的相似性。证明该拟合方法有效,对应得到的实际轨道不平顺可以作为现场养护维修作业的依据。
Abstract
Due to the combined effects of temperature loads and other environmental factors, the complex deformation of long-span high-speed railway bridges poses a challenge for the control of track irregularities on the bridge. Given that temperature deformation is the most crucial factor influencing the vertical deformation of the bridges, to clarify the relationship between bridge temperature deformation and actual track deformations, and to facilitate quick calculation of track irregularities for maintenance and repair personnel, a wavelet reconstruction-conglomerative hierarchical clustering algorithm is proposed to determine the bridge temperature deformations under different temperature conditions. Firstly, using the static detection data of track irregularities under different temperature conditions of a kilometer-span high-speed railway cable-stayed bridge in China as the sample function, wavelet transform is utilized for time-frequency feature analysis, resulting in the bridge deformations under various temperature conditions. Secondly, through agglomerative hierarchical clustering analysis, the bridge temperature deformations under different temperatures are categorized into four classes, and the fitting coefficients of a 10th-order polynomial for representing the bridge temperature deformations are determined. Finally, the actual track irregularities are defined as the discrepancy between the measured vertical deviation data and the fitted bridge temperature deformations, with their correlation being validated. The results demonstrate that the proposed actual track irregularities exhibit temporal correlations with the measured track irregularity data in the 10m mid-span chord measurement, 30m Vector Length Difference, and 60m mid-span chord measurement, ranging from 0.9980 to 0.9995, 0.9860 to 0.9966, and 0.9123 to 0.9568, respectively. Moreover, the waveforms in the time domain exhibit a good match;In the frequency domain, thecorresponding spectral density values of each frequency on the spectrum of different measurement results are basically the same, and the coherence function is between 0.9 and 1 at each frequency. The measured results are very similar to the fitting results. confirming the effectiveness of the fitting method, providing a basis for on-site maintenance and repair operations.
关键词
大跨桥 /
轨道不平顺 /
温度变形 /
小波重构 /
线形拟合
{{custom_keyword}} /
Key words
long-span bridge /
track irregularity /
temperature deformation /
wavelet-reconstructed /
linear fitting
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SU Miao, DAI Gonglian, MARX S, et al. A brief review of developments and challenges for high-speed rail bridges in china and germany[J]. Structural Engineering International, 2019, 29(1): 160-166.
[2] ZHAI Wanming, HAN Zhaolin, CHEN Zhaowei, et al. Train-track-bridge dynamic interaction: a state-of-the-art review[J]. Vehicle System Dynamics, 2019, 57(7) : 984-1027.
[3] 魏贤奎,禹壮壮,刘淦中,等. 大跨度斜拉桥轨道的几何形位评估分析[J]. 铁道建筑,2021, 61(05): 109-114.
WEI Xiankui, YU Zhuangzhuang, LIU Ganzhong, et al. Evaluation and analysis of track geometry of long span cable⁃stayed bridge[J]. Railway Engineering, 2021, 61(05): 109-114.
[4] 杨飞,赵文博,高芒芒,等. 运营期高速铁路轨道长波不平顺静态测量方法及控制标准[J]. 中国铁道科学,2020, 41(03): 41-49.
YANG Fei, ZHAO Wenbo, GAO Mangmang, et al. Static measurement method and control standard for long-wave irregularity of high-speed railway track during operation period[J]. China Railway Science, 2020, 41(03): 41-49.
[5] LI Xiaogang, GAO Mangmang, ZHOU Jianting, et al. Permanent deformation limits of long-span track cable-stayed bridges based on service performance analysis[J]. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40(3): 1215-1226.
[6] 朱志辉,刘杰,周智辉,等.考虑温度变形的大跨度拱桥行车动力响应分析[J]. 铁道工程学报,2019, 246(3): 26-31.
ZHU Zhihui, LIU Jie, ZHOU Zhihui, et al. Driving dynamic response analysis of long-span arch bridge considering temperature deformation[J]. Journal of Railway Engineering Society, 2019, 246(3): 26-31.
[7] 骆婷,韦凯,王显,等. 大跨桥上减振轨道过渡段动力特性分析[J]. 铁道科学与工程学报,2022, 19(05): 1196-1205.
LUO Ting, WEI Kai, WANG Xian, et al. Dynamic performances of transition section of damping track on long span bridge[J]. Journal of Railway Science and Engineering, 2022, 19(05): 1196-1205.
[8] 李永乐,鲍玉龙,董世赋,等. 大跨度铁路斜拉桥冲击系数的影响因素研究[J]. 振动与冲击,2015, 34(19): 138-143.
LI Yongle, BAO Yulong, DONG Shifu, et al. Influencing factors of impact coefficient for long-span railway cable-stayed bridges[J]. Journal of Vibration and Shock, 2015, 34(19): 138-143.
[9] 雷虎军,刘伟,黄炳坤. 地震作用下千米级高速铁路悬索桥行车安全性研究[J]. 振动与冲击,2020, 39(10): 249-255.
LEI Hujun, LIU Wei, HUANG Bingkun, et al. Running safety of high-speed railway kilometre-level suspension bridge under earthquake[J]. Journal of Vibration and Shock, 2020, 39(10): 249-255.
[10] 雷虎军,黄炳坤,刘伟. 基于几何指标的高速铁路桥上列车地震安全性评判方法[J]. 振动与冲击,2020, 39(17): 57-63.
LEI Hujun, HUANG Bingkun, LIU Wei, et al. Evaluation method for running safety of train on a high-speed railway bridge based on geometric indexes[J]. Journal of Vibration and Shock, 2020, 39(17): 57-63.
[11] JALILI M M, ORAFA A H. A Dynamic Model for the Interaction of the Cable Bridge and Train System[J]. International Journal of Civil Engineering, 2015, 13(3): 348-361.
[12] 盛兴旺,郭舜哲,郑纬奇,等. 公铁两用大跨度斜拉桥-无砟轨道体系变形适应性研究[J/OL]. 铁道科学与工程学报,https://doi.org/10.19713/j.cnki.43-1423/u.T20230646
SHENG Xingwang, GUO Shunzhe, ZHENG Weiqi, et al. Study on deformation adaptability of ballastless track on highway and railway long-span cable-stayed bridge[J/OL]. https://doi.org/10.19713/j.cnki.43-1423/u.T20230646
[13] 姜培斌,凌亮,丁鑫,等. 考虑车体刚柔耦合振动的高速铁路轨道不平顺敏感波长研究[J]. 振动与冲击,2021, 40(15): 79-89.
JIANG Peibin, LING Liang, DING Xin, et al. Track irregularity sensitive wavelengths of high-speed railway considering flexible vibration of vehicle body[J]. Journal of Vibration and Shock, 2021, 40(15): 79-89.
[14] 李秋义,赵云哲,谢晓慧,富春江特大桥轨道高低长波不平顺评估[J]. 铁道科学与工程学报,2022, 19(11): 3217-3224.
LI Qiuyi, ZHAO Yunzhe, XIE Xiaohui, et al. Evaluation of track long-wave vertical irregularity on Fuchun River super large bridge[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3217-3224.
[15] 王平,高天赐,汪鑫,等. 基于拟合平纵断面的铁路特大桥梁线路平顺性评估[J]. 西南交通大学学报,2020, 55(2): 231-237, 272.
WANG Ping, GAO Tianci, WANG Xin, et al. Smoothness estimation of super-large bridges in railway line based on fitting railway plane and profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237, 272.
[16] 周华龙,杨文茂. 大跨桥上线路调坡及板式道床铺设方法研究[J]. 铁道工程学报,2020, 37(08): 35-40.
ZHOU Hualong, YANG Wenmao. Research on the route gradient adjustment and track slab paving method on long-span bridge[J]. Journal of Railway Engineering Society, 2020, 37(08): 35-40.
[17] 国家铁路局.高速铁路设计规范: TB 10621-2014[S]. 北京: 中国铁道出版社2015.
[18] Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.
[19] 吕琳,尉永清,任敏,等. 基于蚁群优化算法的凝聚型层次聚类[J]. 计算机应用研究,2017, 34(01): 114-117.
LÜ Lin, WEI Yongqing, REN Min. et al. Agglomerative hierarchical clustering based on ant colony optimization algorithm[J]. Application Research of Computers, 2017, 34(01): 114-117.
[20] 刘艺琴,王成雄,张爱敏,等. 基于层次聚类的贵金属三效催化材料起燃温度识别算法研究[J]. 稀有金属,2022, 46(07): 982-988.
LIU Yiqin, WANG Chengxiong, ZHANG Aimin. et al. Light-off temperature of precious metal-based three-way catalytic materials on basis of hierarchical clustering by recognition algorithm[J]. Chinese Journal of Rare Metals, 2022, 46(07): 982-988.
[21] 练松良,刘扬,杨文忠. 沪宁线轨道不平顺谱的分析[J]. 同济大学学报(自然科学版),2007, (10): 1342-1346.
LIAN Songliang, LIU Yang, YANG Wenzhong. Analysis of Track Irregularity Spectrum of Shangha-i Nanjing Railway[J]. Journal of Tongji University(Natural Science), 2007, (10): 1342-1346.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}