陶瓷密封环旋转摩擦噪声特性研究

王开心1,胡长明2,张幼安2,张艳1,孙蓓蓓1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 211-218.

PDF(3044 KB)
PDF(3044 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 211-218.
论文

陶瓷密封环旋转摩擦噪声特性研究

  • 王开心1,胡长明2,张幼安2,张艳1,孙蓓蓓1
作者信息 +

A study on the characteristics of rotating friction-induced noise of ceramic seal rings

  • WANG Kaixin1, HU Changming2,ZHANG Youan2,ZHANG Yan1,SUN Beibei1
Author information +
文章历史 +

摘要

旋转机械密封采用的陶瓷密封环在航空航天领域应用广泛,但其干摩擦产生的噪声问题一直未得到解决。本文以陶瓷密封环为研究对象,在旋转摩擦试验台上通过振动加速度传感器和精密拾音器等测得振动与噪声信号,分析了陶瓷密封环的旋转摩擦随机啸叫的特点和产生机理。试验结果表明,振动加速度的倍频响应与高频啸叫关联,转动速度是影响振动和啸叫特征频率的主要因素。根据试验建立密封环的有限元仿真模型,采用瞬态动力学分析方法,得出的各转速特征频率与试验较为吻合;获得摩擦表面的接触压力,发现转动时摩擦接触界面的反复分离-附着现象,这被认为是试验中啸叫的主要机制。另外转速越大,接触压力越大,从而可推断出摩擦力越大,其诱发的啸叫声压级更大,这与试验测得转速和声压级正相关关系吻合。

Abstract

The ceramic seal ring used in the rotary mechanical seal is widely used in the field of aerospace, but the noise problem caused by dry friction has not been solved. Taking the ceramic sealing ring as the research object, vibration and noise signals are measured on the rotary friction test bench through vibration acceleration sensors and precision pickups, and analyze the characteristics and mechanism of the random roaring of rotary friction of ceramic seal rings. The test results show that the frequency doubling response of vibration acceleration is associated with the high-frequency roar, and the rotation speed is the main factor affecting the characteristic frequency of vibration and whistling. According to the test, a finite element simulation model of the sealing ring is established. Using the transient dynamic analysis method, the characteristic frequency of each rotational speed is relatively consistent with the test; after obtaining the contact pressure of the friction surface, the repeated separation-attachment of the friction contact interface during rotation is found, which is considered to be the main mechanism of roaring in the experiment. In addition, the greater the rotation speed, the greater the contact pressure, so it can be inferred that the greater the friction force and the higher the roaring pressure level induced by it, which is consistent with the positive correlation between the rotational speed and the sound pressure level measured in the test.

关键词

陶瓷密封环 / 旋转摩擦 / 高频啸叫 / 摩擦振动 / 接触压力

Key words

ceramic sealing ring / rotating friction / high-frequency scream / friction-induced vibration / contact pressure.

引用本文

导出引用
王开心1,胡长明2,张幼安2,张艳1,孙蓓蓓1. 陶瓷密封环旋转摩擦噪声特性研究[J]. 振动与冲击, 2024, 43(16): 211-218
WANG Kaixin1, HU Changming2,ZHANG Youan2,ZHANG Yan1,SUN Beibei1. A study on the characteristics of rotating friction-induced noise of ceramic seal rings[J]. Journal of Vibration and Shock, 2024, 43(16): 211-218

参考文献

[1] 李勇凡,宋勇,郝木明, 等. 涡轮泵用球面装配机械密封热变形及磨损特性实验研究[J]. 中国机械工程, 2023,34(13): 1550-1558. LI Yongfan, SONG Yong, HAO Muming, et al. Experimental Study of Thermal Deformation and Wear Characteristics of Spherically-assembled Mechanical Seals for Turbo Pumps[J]. China Mechanical Engineering, 2023,34(13): 1550-1558. [2] 叶绍干,葛纪刚,侯亮, 等. 基于遗传算法的轴向柱塞泵配流盘密封环结构多目标优化[J]. 农业机械学报, 2022,53(1): 441-450. YE Shaogan, GE Jigang, HOU Liang, et al. Multi-objective Optimization of Cylinder/Valve-plate Sealing Ring in Axial Piston Pump Based on Genetic Algorithm[J]. Transactions of Agricultural Machinery, 2022,53(1): 441-450. [3] WANG Xiaofan, MO Jiliang, OUYANG Huajiang, et al. Simultaneous Energy Harvesting and Tribological Property Improvement[J]. Friction, 2021,9(5): 1275-1291. [4] Woodhouse J, Lynch-Aird N. Choosing Strings for Plucked Musical Instruments[J]. ACTA ACUSTICA UNITED WITH ACUSTICA, 2019,105: 516-529. [5] Lynch-Aird N, Woodhouse J. Frequency Measurement of Musical Instrument Strings Using Piezoelectric Transducers[J]. Vibration, 2018,1(1): 3-19. [6] Papangelo A, Hoffmann N, Grolet A, et al. Multiple Spatially Localized Dynamical States in Friction-excited Oscillator Chains[J]. Journal of Sound and Vibration, 2018,417: 56-64. [7] Rathee R. Numerical Modeling and Simulation of Friction Models for Mechanical Systems: A Brief Review[J]. Materials Today: Proceedings, 2023. [8] Sergeev Y A. Mutual Friction in Bosonic Superfluids: A Review[J]. Journal of Low Temperature Physics, 2023, 212(5-6): 251-305. [9] DING Cong, ZHU Hua, SUN Guodong, et al. Chaotic Characteristics and Attractor Evolution of Friction Noise during Friction Process[J]. Friction, 2018,6(1): 47-61. [10] Rubino V, Rosakis A J, Lapusta N. Understanding Dynamic Friction through Spontaneously Evolving Laboratory Earthquakes[J]. Nature Communications, 2017,8: 15991. [11] Akay A. Acoustics of Friction[J]. The Journal of the Acoustical Society of America, 2002,111(4): 1525-1548. [12] Dong X, Dykman M I, Chan H B. Strong Negative Nonlinear Friction from Induced Two-phonon Processes in Vibrational Systems[J]. Nature Communications, 2018,9(1): 3241. [13] DONG Conglin, MO Jiliang, YUAN Chengqing, et al. Vibration and Noise Behaviors During Stick-slip Friction[J]. Tribology Letters, 2019,67(4): 1-12. [14] ZHAO Xingwei, Gräbner N, Von Wagner U. Avoiding Creep Groan: Investigation on Active Suppression of Stick-slip Limit Cycle Vibrations in an Automotive Disk Brake via Piezoceramic Actuators[J]. Journal of Sound and Vibration, 2019,441: 174-186. [15] 鲍久圣,董慧丽,阴妍, 等. 交变磁场对制动器摩擦噪声抑制的试验研究[J]. 振动工程学报, 2021,34(4): 838-848. BAO Jiusheng, DONG Huili, YIN Yan, et al. Experimental Analysis on Alternating Magnetic Field to Suppress Friction Noise of Brake[J]. Journal of Vibration Engineering, 2021,34(4): 838-848. [16] CAI Cunguang, CHENG Yuqiang, SHUAI Changgeng. Research on the Friction Noise Generation Mechanism and Suppression Method of Submarine Rubber-based Propeller Bearings—A Review[J]. Polymers, 2023, 15(16): 3352. [17] CHEN Fang, OUYANG Huajiang, WANG Xiaocui. A New Mechanism for Friction-induced Vibration and Noise[J]. Friction, 2023,11(2): 302-315. [18] LIU Sheng, De Silva U, Chen D, et al. Investigation of Wheel Squeal Noise under Mode Coupling Using Two-disk Testrig Experiments[J]. Wear, 2023,530-531: 205035. [19] Neis P D, Ferreira N F, Poletto J C, et al. Quantification of Brake Creep Groan in Vehicle Tests and its Relation with Stick-slip Obtained in Laboratory Tests[J]. Journal of sound and vibration, 2016,369: 63-76. [20] Hassan M Z, Brooks P C, Barton D C. The Evaluation of Disc Brake Squeal Propensity through a Fully Coupled Transient Thermomechanical Model[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013,227: 361-375. [21] Khala M J, Hare C, WU Chuanyu, et al. The Importance of a Velocity-dependent Friction Coefficient in Representing the Flow Behaviour of a Blade-driven Powder Bed[J]. Powder Technology, 2021,385: 264-272. [22] Liang X M, Xing Y Z, Li L T, et al. An Experimental Study on the Relation between Friction Force and Real Contact Area[J]. Scientific Reports, 2021,11(1): 20366. [23] ZHAO Wei, ZHANG Di, XIE Yonghui. Vibration Analysis of Mistuned Damped Blades with Nonlinear Friction and Contact[J]. Journal of Low Frequency Noise, Vibration, and Active Control, 2019,38(3-4): 1505-1521. [24] Rhee S K, Tsang P H S, Wang Y S. Friction-induced Noise and Vibration of Disc Brakes[J]. Wear, 1989,133(1): 39. [25] 蒋宇航. Mn-Cu阻尼合金与四种金属材料的摩擦振动噪声特性对比研究[D].成都:西南交通大学,2017. JIANG Yuhang. The Comparative Study on the Characteristics of Friction-induced Vibration and Noise of Mn-Cu Damping Alloy and Four Kinds of Metal Materials[D]. Chengdu: Southwest Jiaotong University,2017. [26] 詹斌,孙涛,沈炎武,等. 基于复特征值分析的某盘式制动器制动尖叫问题改进[J].振动与冲击.2021,40(5):108-113. ZHAN Bin, SUN Tao, SHEN Yanwu, et al. Improvement of brake squeal of a disc brake based on complex eigenvalue analysis[J]. Journal of Vibration and Shock, 2021,40(5):108-113. [27] 刘铭倩,王东伟,李建熹,等. 带沟槽表面的制动盘界面摩擦磨损及振动噪声特性[J].振动与冲击.2018,37(1):236-240. LIU Mingqian, WANG Dongwei, LI Jianxi, et al. Characteristics of the tribological wear, vibration and squeal noise of brake disc surfaces with grooves[J]. Journal of Vibration and Shock, 2018,37(1):236-240.

PDF(3044 KB)

Accesses

Citation

Detail

段落导航
相关文章

/