基于混合减震技术的既有建筑抗震韧性提升

孙澳1, 陈鑫1, 傅文炜1, 2, 孙勇3, 朱燕清3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 238-246.

PDF(1811 KB)
PDF(1811 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 238-246.
论文

基于混合减震技术的既有建筑抗震韧性提升

  • 孙澳1,陈鑫1,傅文炜1, 2,孙勇3,朱燕清3
作者信息 +

Improvement of seismic resilience for existing buildings based on hybrid seismic reduction technology

  • SUN Ao1, CHEN Xin1, FU Wenwei1, 2, SUN Yong3, ZHU Yanqing3
Author information +
文章历史 +

摘要

建筑抗震韧性评价是地震工程领域的研究重点,在指导设计人员提高结构抗震设计水准和引导管理人员增强结构防灾意识两个方面具有重要意义。本文以位于8度区(0.30 g)的某既有框架结构为研究对象,基于GB/T 38591-2020《建筑抗震韧性评价标准》从修复费用、修复时间和人员伤亡三个角度对结构加固前后的抗震韧性进行评价,并结合加固收益率对减震加固方案的经济效益进行分析。结果表明,采用黏滞阻尼器和屈曲约束支撑的加固技术可有效控制结构的动力响应,层间位移角和加速度均值的最大下降幅度分别为76.9%和29.8%。在罕遇地震作用下决定该结构韧性等级的主要影响因素为修复时间和人员损失。虽然加固前后该结构抗震韧性评级均为一星,但是所采用的减震方案有效提升了结构的抗震韧性,研究成果可为既有建筑的韧性评价与提升提供参考。

Abstract

In the field of earthquake engineering, building seismic resilience assessment is a research focus, which holds great significance in guiding designers to enhance the level of structural seismic design and helping managers raise awareness of structural disaster prevention. This study focuses on an existing frame structure located in the 8-degree seismic region (0.30 g). Three perspectives (repair cost, repair time, and personnel loss) were considered while evaluating the seismic resilience of the structure before and after reinforcement based on GB/T 38591-2020 "Standard for seismic resilience assessment of buildings". Furthermore, the economic benefits of the seismic strengthening program by considering the yield rate on reinforcement. The results demonstrate that the employment of viscous dampers and BRB effectively controls the dynamic response of the structure. Notably, there is a maximum drop of 76.9% and 29.8% in the story drift ratio and mean acceleration, respectively. Repair time and personnel loss are two important perspectives that affect the level of seismic resilience under rare earthquakes. The implemented seismic strengthening program greatly increases the structure's seismic resilience, even if the level of seismic resilience is still one star both before and after strengthening. These research findings serve as a valuable reference for the evaluation and improvement of seismic resilience in existing buildings.

关键词

既有建筑 / 混合减震技术 / 抗震韧性评价 / 韧性评级 / 动力响应计算

Key words

existing buildings / hybrid seismic reduction technology / seismic resilience assessment / resilience rating / dynamic response calculation

引用本文

导出引用
孙澳1, 陈鑫1, 傅文炜1, 2, 孙勇3, 朱燕清3. 基于混合减震技术的既有建筑抗震韧性提升[J]. 振动与冲击, 2024, 43(16): 238-246
SUN Ao1, CHEN Xin1, FU Wenwei1, 2, SUN Yong3, ZHU Yanqing3 . Improvement of seismic resilience for existing buildings based on hybrid seismic reduction technology[J]. Journal of Vibration and Shock, 2024, 43(16): 238-246

参考文献

[1] 潘 毅,易督航,游文龙,等. 泸县6. 0级地震村镇建筑震害调查与分析[J]. 土木工程学报,2023, 56(5): 47-59. PAN Yi, YI Du-hang, YOU Wen-long, et al. Investigation and analysis of seismic damage to village and township buildings after the Lu County 6.0 magnitude earthquake [J]. Journal of civil engineering, 2023, 56(5): 47-59. [2] 李宏男,肖诗云,霍林生. 汶川地震震害调查与启示[J]. 建筑结构学报,2008, 29(4): 10-19. LI Hong-nan, XIAO Shi-yun, HUO Lin-sheng. Damage investigation and analysis of engineering structures in the Wenchuan earthquake [J]. Journal of building structures, 2008, 29(4): 10-19. [3] Siddika A, Mamun M A A, Alyousef R, et al. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review [J]. Journal of Building Engineering,2019,25:100798. [4] 薛建阳,凌怀泉,周汉亮,等. 独立式石箍窑洞加固模型振动台试验研究[J]. 振动与冲击,2022, 41(23): 211-221. XUE Jian-yang, LING Huai-quan, ZHOU Han-liang, et al. Shaking table tests for independent stone hoop cave reinforcement model [J]. Journal of vibration and shock, 2022, 41(23): 211-221. [5] 周 云,李定斌,邓雪松. 抗震韧性建筑构建与实现[J]. 工程抗震与加固改造,2021, 43(1): 1-11. ZHOU Yun, LI Ding-Bin, DENG Xue-Song. Construction and realization of seismic resilient prefabricated building system [J]. Earthquake resistant engineering and retrofitting, 2021, 43(1): 1-11. [6] Xu ZHEN, Hua-zhen ZHANG, Xin-zheng LU, et al. A prediction method of building seismic loss based on BIM and FEMA P-58[J]. Automation in Construction,2019,102:245-257. [7] 肖 意,周 颖,吴 浩,等. GB/T 38591—2020《建筑抗震韧性评价标准》与国际相关标准对比研究[J]. 建筑结构学报,2021, 42(7): 194-202. XIAO Yi, ZHOU Ying, WU Hao, et al. GB/T 38591-2020 Comparative Study of Building Seismic Toughness Evaluation Standard and International Relevant Standards [J]. Journal of Building Structures, 2021, 42(7): 194-202. [8] 乔保娟,肖从真,杨志勇. 基于构件损伤状态的复杂建筑抗震韧性评价方法研究[J]. 工程力学,2023(11): 21-30. QIAO Bao-juan, XIAO Cong-zhen, YANG Zhi-yong. Research on Seismic Toughness Evaluation Method for Complex Buildings Based on Damage States of Components [J]. Engineering mechanics, 2023(11): 21-30. [9] 何 政,安 宁,徐菁菁. 考虑损伤的结构抗震可恢复性[J]. 工程力学,2017, 34(5): 179-187. HE Zheng, AN Ning, XU Jing-jing. Seismic Recoverability of Structures Considering damage [J]. Engineering mechanics, 2017, 34(5): 179-187. [10] Wei-feng TAO, Nai-yu WANG, Ellingwood B, et al. Enhancing bridge performance following earthquakes using Markov decision process [J]. Structure and Infrastructure Engineering,2021,17(1):62-73. [11] 杨国俊,田 里,杜永峰,等. 基于修复函数的连续梁桥抗震韧性因素及改进评估研究[J]. 土木工程学报,2022, 55(z1): 219-226. YANG Guo-jun, TIAN Li, DU Yong-feng, et al. Research on seismic resilience factors and improved evaluation of continuous beam bridges based on recovery function [J]. Journal of civil engineering, 2022, 55(z1): 219-226. [12] 宗成才,冀 昆,温瑞智,等. 城市燃气管网三维度抗震韧性定量评估方法[J]. 工程力学,2021, 38(2): 146-156. ZONG Cheng-cai, JI Kun, WEN Rui-zhi, et al. A quantitative assessment method for three-dimensional seismic toughness of urban gas pipeline networks [J]. Engineering mechanics, 2021, 38(2): 146-156. [13] FEMA. Seismic performance assessment of buildings volume1 methodology: FEMA P-58-1[S]. Washington DC: Federal Emergency Management Agency, 2012. [14] FEMA. Seismic performance assessment of buildings volume2 methodology: FEMA P-58-2[S]. Washington DC: Federal Emergency Management Agency, 2012. [15] ALMUFTI I, WILLFORD M.REDi rating system, resilience-based earthquake design initiative for the next generation of buildings[R]. London UK:Arup Group,2013. [16] U. S. Resiliency Council. Rating building performance in natural disasters [EB/OL]. http://usrc.org/building-rating-system, 2022-03-20. [17] GB/T 38591-2020. 建筑抗震韧性评价标准[S]. 北京: 中国标准出版社, 2020. [18] 周 云,陈章彦,李定斌. 抗震韧性非结构构件研究与应用[J]. 土木工程学报,2022, 55(6): 15-25, 35. ZHOU Yun, CHEN Zhan-gyan, LI Ding-bin. Research and application of seismic resilient non-structural component [J]. Journal of civil engineering, 2022, 55(6): 15-25, 35. [19] 李戚齐,曲 哲,解全才,等. 我国公共建筑中吊顶的震害特征及其易损性分析[J]. 工程力学,2019, 36(7): 207-215. LI Qi-qi, QU Zhe, XIE Quan-cai, et al. Analysis of earthquake damage characteristics of suspended ceilings and their vulnerability in public buildings in China [J]. Engineering mechanics, 2019, 36(7): 207-215. [20] 谢贤鑫,张令心,曲 哲. 面内往复荷载作用下足尺砌体填充墙的易损性研究[J]. 建筑结构学报,2020, 41(6): 161-169. XIE Xian-xin, ZHANG Ling-xin, QU Zhe. Seismic fragility of full-scale masonry infill subjected to in-plane cyclic loading [J]. Journal of Building Structures, 2020, 41(6): 161-169. [21] 孙得璋,黄 勇,杨振宇,等. 九寨沟 7. 0 级地震中典型非结构构件震害特征[J]. 地震工程与工程振动,2019, 39(1): 27-34. SUN De-zhang, HUANG Yong, YANG Yong, et al. Characteristics of typical non-structural components in Jiuzhaigou 7.0 magnitude earthquake [J]. Earthquake engineering and engineering vibration, 2019, 39(1): 27-34. [22] Xiong CHEN, Huang JIN, Xin-zheng LU. Framework for city‐scale building seismic resilience simulation and repair scheduling with labor constraints driven by time–history analysis [J]. Computer-Aided Civil and Infrastructure Engineering.2020,35(4):322-341. [23] 缪惠全,王乃玉,汪英俊,等. 基于灾后恢复过程解析的城市韧性评价体系[J]. 自然灾害学报,2021, 30(1): 10-27. MIAO Hui-quan, WANG Nai-yu, WANG Ying-jun, et al. An urban resilience measurement system based on decomposing post-disaster recovery process [J]. Journal of natural disasters, 2021, 30(1): 10-27. [24] 佟 旋,胡 利,张兴富. 城市更新中结构改造与加固技术及应用[J]. 工程抗震与加固改造,2021, 43(2): 125-129. TONG Xuan, HU Li, ZHANG Xing-fu. Structural alteration and reinforcement technology in urban renewal and its application [J]. Engineering seismic and reinforcement retrofit, 2021, 43(2): 125-129. [25]GB 18306-2015. 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2015. [26] Can-tian YANG, Lin-lin XIE, Ai-qun LI, et al. Ground motion intensity measures for seismically isolated RC tall buildings [J]. Soil Dynamics and Earthquake Engineering,2019,125:105727. [27] 王珮瑜,陈 鑫,刘 涛,等. 地震动特性对凹凸不规则校舍抗震加固性能影响分析[J]. 工程抗震与加固改造,2022, 44(4): 119-128. WANG Pei-yu, CHEN Xin, LIU Tao, et al. Analysis on influences of ground motion characteristics on seismic strengthening performance of school buildings with irregular plane [J]. Engineering seismic and reinforcement retrofit, 2022, 44(4): 119-128. [28] 王 艳,刘 哲,周瑞娇,等. 基于车桥耦合振动分析的大跨径曲弦桁梁桥加固方案评价研究[J]. 振动与冲击,2022, 41(14): 199-209. WANG Yan, LIU Zhe, ZHOU Rui-jiao, et al. Evaluation of the reinforcement scheme for a long-span curved truss bridge based on vehicle-bridge coupled vibration analysis [J]. Journal of vibration and shock, 2022, 41(14): 199-209. [29] Carofilis W, Perrone D, O'Reilly G J, et al. Seismic retrofit of existing school buildings in Italy: Performance evaluation and loss estimation [J]. Engineering Structures.2020,225:111243. [30]GB 50011-2010. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016. [31]JGJ 297-2013. 建筑消能减震技术规程[S]. 北京: 中国建筑工业出版社, 2013. [32] 孙柏锋,邵一凡,余文正,等. 高层建筑屈曲约束支撑与粘滞阻尼器混合被动控制应用研究[J]. 建筑结构. 2021, 51(S2): 640-644. SUN Bai-feng, SHAO Yi-fan, YU Wen-zheng, et al. Application of hybrid passive control of buckling restrained support and viscous damper to tall buildings [J]. Building structure, 2021, 51(S2): 640-644. [33]GB 50500-2013建设工程工程量清单计价规范[S]. 北京: 中国计划出版社, 2013. [34] 石 晟,杜东升,王曙光,等. 高层钢结构不同减震加固方案的抗震韧性评估[J]. 土木工程学报,2020, 53(4): 71-82. SHI Sheng, DU Dong-sheng, WANG Shu-guang, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio [J]. Journal of civil engineering, 2020, 53(4): 71-82.

PDF(1811 KB)

Accesses

Citation

Detail

段落导航
相关文章

/