随着我国航天事业的高速发展,特种电子通信设备等各类电子设备被广泛应用于航天器中。由于在发射过程中的剧烈振动,以及在太空中可能遇到的各种冲击和压力变化,这类电子设备的振动问题需重点关注,常采用橡胶减振器进行减振。针对橡胶减振器,首先考虑橡胶材料的频率相关性与温度相关性,推导了修正六参数分数导数模型;其次对带橡胶减振器的电子设备进行了正弦与随机振动试验;再次对结构进行有限元分析,并将有限元分析结果与试验结果对比;最后通过有限元分析预测不同温度的减振性能。结果表明,修正六参数分数导数模型能够较好地表征橡胶振动性能,且橡胶减振器具有良好的减振性能,但其减振效果随着温度降低而下降。
Abstract
With the rapid development of China's aerospace industry, all kinds of electronic equipment such as specialized electronic communication devices are widely used in spacecraft. Due to the severe vibrations during launch process and the various impacts and pressure changes that may occur in space, the vibration issue of such electronic devices requires special attention, and rubber shock absorbers are commonly used for vibration reduction. For rubber shock absorber, firstly, the frequency dependence and temperature dependence of rubber materials are considered, a modified six-parameter fractional derivative model was derived. Secondly, a sine sweep test and random vibration test were carried out on electronic devices equipped with rubber shock absorber. Thirdly, the finite element analysis of the structure was conducted, and the finite element analysis results were compared with the test results. Finally, the damping performance at different temperatures was predicted by finite element analysis. The results show that the modified six-parameter fractional derivative model provides a good representation of vibration performance of rubber. Additionally, the rubber shock absorber exhibits good damping performance. However, the damping effectiveness decreases as the temperature decreases.
关键词
橡胶本构 /
频率与温度 /
振动 /
有限元分析
{{custom_keyword}} /
Key words
rubber constitutive model /
frequency and temperature /
vibration /
finite element analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 霍健, 徐耀玲. 一种直升机机载跟瞄系统被动隔振平台设计[J]. 应用力学学报, 2023, 40(04): 754-760.
HUO Jian, XU Yaoling. Design of passive vibration isolation platform for helicopter airborne tracking-aiming system[J]. Chinese Journal of Applied Mechanics, 2023, 40(04): 754-760.
[2] 郭慧婷, 董龙雷, 周嘉明, 等. 仪器舱舱段局域共振单元减振设计[J]. 振动与冲击, 2022, 41(17): 313-319.
GUO Huiting, DONG Longlei, ZHOU Jiaming, et al. Vibration reduction design of local resonance unit in instrument cabin[J]. Journal of Vibration and Shock, 2022, 41(17): 313-319.
[3] 涂春潮, 陈子昂, 张雪颂, 等. 惯性导航用氟硅橡胶减振器振动性能研究[J]. 兵器材料科学与工程, 2023, 46(05): 131-136.
TU Chunchao, CHEN Ziang, ZHANG Xuesong, et al. Vibration performance of fluoro-silicone rubber vibration absorber for inertial navigation[J]. Ordnance Material Science and Engineering, 2023, 46(05): 131-136.
[4] 侯宏, 高星, 孙亮, 等. 变频变温条件粘弹材料参数化数学模型[J]. 振动与冲击, 2013, 32(21): 209-213.
HOU Hong, GAO Xing, SUN Liang, et al. Parameterized mathematical model of a viscoelastic material under variations of temperature and frequency[J]. Journal of Vibration and Shock, 2013, 32(21): 209-213.
[5] 赵永玲, 侯之超, 黄友剑, 等. 橡胶材料的一种5参数分数导数模型[J]. 振动与冲击, 2015, 34(23): 37-41.
ZHAO Yongling, HOU Zhichao, HUANG Youjian, et al. A fractional derivative model with five parameters for rubber materials[J]. Journal of Vibration and Shock, 2015, 34(23): 37-41.
[6] 唐振寰. 橡胶隔振器动力学建模及动态特性研究[D]. 南京: 南京航空航天大学, 2013.
[7] 王迪. 基于某型涡桨发动机橡胶隔振器动力学特性研究[D]. 南京: 南京航空航天大学, 2017.
[8] Gong D, Duan Y, Wang K, et al. Modelling rubber dynamic stiffness for numerical predictions of the effects of temperature and speed on the vibration of a railway vehicle car body[J]. Journal of Sound and Vibration, 2019, 449: 121-139.
[9] Xu Z D, Xu C, Hu J. Equivalent fractional Kelvin model and experimental study on viscoelastic damper[J]. Journal of Vibration and Control, 2015, 21(13): 2536-2550.
[10] Blétry M, Thai M T, Champion Y, et al. Consistency of the free-volume approach to the homogeneous deformation of metallic glasses[J]. Comptes Rendus Mecanique, 2014, 342(5): 311-314.
[11] 李占龙, 宋勇, 孙大刚, 等. 黏弹性材料动态力学性能的分数阶时温等效模型与验证[J]. 农业工程学报, 2017, 33(08): 90-96.
LI Zhanlong, SONG Yong, SUN Dagang, et al. Fractional time-temperature equivalent model and verification of dynamic mechanical properties of viscoelastic materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(08): 90-96.
[12] 李芳妍. 硅橡胶减振器的动态特性研究[D]. 北京:北京化工大学, 2022.
[13] 段成红, 李芳妍, 罗翔鹏, 等. 硅橡胶减振器的非线性随机振动分析[J]. 弹性体, 2022, 32(03): 18-23.
DUAN Chenhong, LI Fangyan, LUO Xiangpeng, et al. Nonlinear random vibration analysis of a silicone rubber isolator[J]. China Elastomerics, 2022, 32(03): 18-23.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}