带有斜向惯容的悬挂式隔振系统动力学特性仿真研究

杨猛1, 王猛1, 骆星九1, 张孝强1, 丁虎2, 3, 4, 陈立群2, 3, 4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 263-268.

PDF(1687 KB)
PDF(1687 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 263-268.
论文

带有斜向惯容的悬挂式隔振系统动力学特性仿真研究

  • 杨猛1,王猛1,骆星九1,张孝强1,丁虎2,3,4,陈立群2,3,4
作者信息 +

A simulation study on the dynamic characteristics of a suspension vibration isolation system with a diagonal inerter

  • YANG Meng1, WANG Meng1, LUO Xingjiu1, ZHANG Xiaoqiang1, DING Hu2,3,4, CHEN Liqun2,3,4
Author information +
文章历史 +

摘要

首先,将惯容器、阻尼器和弹簧进行组合,设计实现全并联隔振单元,并将其斜向布置,构成新型悬挂式隔振系统。其次,以ADAMS与MATLAB联合仿真的方式,构建带有斜向惯容器、阻尼器和弹簧的悬挂式隔振系统以及仅带有斜向阻尼器和弹簧的悬挂式隔振系统的仿真模型,并对两种隔振系统进行对比研究,探讨斜向惯容的作用。然后,针对带有斜向惯容器、阻尼器和弹簧的悬挂式隔振系统的加速度传递特性进行研究,改变隔振系统参数观察传递率曲线变化,并探讨了在ADAMS环境下以数值方法、半数值半模型方法表示惯容结构的可行性。最后,以半数值半模型的方法表示惯容,在随机激励下对带有斜向惯容器、阻尼器和弹簧的悬挂式隔振系统中的惯容施加速度与相对速度、加速度与相对速度、相对加速度与相对速度三种半主动控制方式,探讨不同控制方式对隔振性能的影响。研究结果表明,斜向惯容器可以改善悬挂式隔振系统对低频振动的隔离效果,但会增加高频部分的传递率,相对加速度与相对速度和加速度与相对速度的控制方式可以明显提高悬挂式隔振系统对随机激励的衰减效果。

Abstract

Firstly, the inerter, damper, and spring are combined to design a parallel vibration isolation unit, and they are arranged diagonally to form a new suspension vibration isolation system (SVIS). Secondly, through the joint simulation of ADAMS and MATLAB, simulation models of suspension vibration isolation systems with diagonal inerters, dampers, and springs (SVISIDS), as well as suspension vibration isolation systems with only diagonal dampers and springs, are constructed. A comparative study is conducted on the two types of isolation systems to explore the role of diagonal inerter. Then, the acceleration transmission characteristics of a SVISIDS are studied, and the transmission rate curve is observed by changing the system parameters. The feasibility of using numerical and semi numerical and semi model methods to represent inerter in the ADAMS is explored. Finally, the inerter is represented using a semi numerical and semi model method. Under random excitation, three semi-active control methods, namely velocity and relative velocity, acceleration and relative velocity, and relative acceleration and relative velocity, are applied to the inerter in a SVISIDS. The effects of different control methods on isolation performance are explored. The research results indicate that the diagonal inerter can improve the isolation effect of the SVIS on low-frequency vibration, but it will increase the transmission rate of the high-frequency part. The control method of relative acceleration and relative velocity, as well as the control method of acceleration and relative velocity, can significantly improve the attenuation effect of the SVIS on random excitation.

关键词

悬挂式隔振系统 / 惯容 / 加速度传递率 / 半主动控制

Key words

Suspension vibration isolation system / Inerter / Acceleration transmission rate / Semi-active control

引用本文

导出引用
杨猛1, 王猛1, 骆星九1, 张孝强1, 丁虎2, 3, 4, 陈立群2, 3, 4. 带有斜向惯容的悬挂式隔振系统动力学特性仿真研究[J]. 振动与冲击, 2024, 43(16): 263-268
YANG Meng1, WANG Meng1, LUO Xingjiu1, ZHANG Xiaoqiang1, DING Hu2, 3, 4, CHEN Liqun2, 3, 4. A simulation study on the dynamic characteristics of a suspension vibration isolation system with a diagonal inerter[J]. Journal of Vibration and Shock, 2024, 43(16): 263-268

参考文献

[1] SONG S, CHEN AJ. Variational iteration method of dropping shock response for the suspension spring packaging system[J]. Shock and Vibration, 2015, 2015: 408674. [2] SONG S, DUAN NN, CHEN AJ. Application of variational iteration method for dropping damage evaluation of the suspension spring packaging system[J]. Abstract and Applied Analysis, 2014: 385404. [3] GATTI G. Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 83: 105143. [4] GATTI G. Effect of parameters on the design of a suspension system with four oblique springs[J]. Shock and Vibration, 2021, 2021: 5556088. [5] ZHAO F, JI JC, YE K, et al. Increase of quasi-zero stiffness region using two pairs of oblique springs[J]. Mechanical Systems and Signal Processing, 2020, 144: 106975. [6] ZHAO F, JI JC, LUO QT, et al. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band[J]. Nonlinear Dynamics, 2021, 104(1): 349-365. [7] YANG M, ZHANG J, LUO XJ. Research on new types of suspension vibration reduction systems (SVRSs) with geometric nonlinear damping[J]. Mathematical Problems in Engineering, 2021, 2021: 6627693. [8] SMITH MC. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662. [9] HU YL, CHEN MZQ, SHU Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration, 2015, 346: 17-36. [10] WANG Y, WANG RC, MENG HD. Analysis and comparison of the dynamic performance of one-stage inerter-based and linear vibration isolators[J]. International Journal of Applied Mechanics, 2018, 10(1): 1850005. [11] BADUIDANA M, KENFACK-JIOTSA A. Optimal design of inerter-based isolators minimizing the compliance and mobility transfer function versus harmonic and random ground acceleration excitation[J]. Journal of Vibration and Control, 2021, 27(11-12): 1297-1310. [12] CAO F, CHEN MZQ, HU YL. Seismic isolation performance evaluation for a class of inerter-based low-complexity isolators[J]. Shock and Vibration, 2020, 2020: 8837822. [13] WANG XR, HE T, SHEN YJ, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration, 2019, 463: 114941. [14] BARREDO E, LARIOS GM, MAYEN J, et al. Optimal design for high-performance passive dynamic vibration absorbers under random vibration[J]. Engineering Structures, 2019, 195: 469-489. [15] WANG Y, WANG RC, MENG HD, et al. An investigation of the dynamic performance of lateral inerter-based vibration isolator with geometrical nonlinearity[J]. Archive of Applied Mechanics, 2019, 89(9): 1953–1972. [16] WANG Y, LI HX, CHENG C, et al. A nonlinear stiffness and nonlinear inertial vibration isolator[J]. Journal of Vibration and Control, 2021, 27(11-12): 1336-1352. [17] MORAES FD, SILVEIRA M, GONCALVES PJP. On the dynamics of a vibration isolator with geometrically nonlinear inerter[J]. Nonlinear Dynamics, 2018, 93(3): 1325-1340. [18] YANG J, JIANG JZ, NEILD SA. Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators[J]. Nonlinear Dynamics, 2020, 99(3): 1823-1839. [19] LIU CR, YU KP, LIAO BP, et al. Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 95: 105654. [20] LIAO X, ZHANG N, DU XF, et al. Theoretical modeling and vibration isolation performance analysis of a seat suspension system based on a negative stiffness structure[J]. Applied Sciences-Basel, 2021, 11(15): 6928. [21] BLANCO-ORTEGA A, REZA-ARTEGA L, MAGADAN-SALAZAR A, et al. Influence of Inerter in a 2 DOF Mechanical System[C]. 2021 International Conference on Mechatronics, Electronics and Automotive Engineering, Cuernavaca, Mexico, 2021: 140-145. [22] 江浩斌,耿建涛,张孝良,等. 基于虚拟样机模型的车辆蓄能悬架联合仿真研究[J]. 振动与冲击,2010,29(12):221-223,249,250. JIANG Haobin, GENG Jiantao, ZHANG Xiaoliang, et al. Study on co-simulation of vehicle suspension system employing inerter based on virtual protoype model[J]. Journal of Vibration and Shock, 2010, 29(12): 221-223, 249, 250.

PDF(1687 KB)

Accesses

Citation

Detail

段落导航
相关文章

/