驻波型直线超声波电机接触特性有限元建模与分析

蒋春容1, 薛鑫岩1, 陆旦宏1, 金龙2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 42-50.

PDF(1825 KB)
PDF(1825 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 42-50.
论文

驻波型直线超声波电机接触特性有限元建模与分析

  • 蒋春容1,薛鑫岩1,陆旦宏1,金龙2
作者信息 +

Finite element modeling and analysis on contact characteristics of a standing wave linear ultrasonic motor

  • JIANG Chunrong1,XUE Xinyan1,LU Danhong1,JIN Long2
Author information +
文章历史 +

摘要

超声波电机接触摩擦是影响电机性能的关键环节,建立超声波电机的接触模型对电机性能优化具有重要作用。现有对驻波型超声波电机接触问题的研究,大多采用解析法,需要采用较多的简化假设,难以准确反映电机实际结构及真实接触情况。针对这一问题,采用有限元法,对驻波型直线超声波电机接触特性进行建模和分析。首先,考虑定子复合结构,建立了定子三维有限元模型,分析定子在外加电压作用下的振动响应,得到定子振动位移表达式。在此基础上,考虑定子与动子的结构和接触特点,建立定动子接触三维有限元模型。基于所建立的模型,分析了定动子的接触状态、接触压力分布,并研究了驱动电压大小和预压力变化对接触特性和电机性能的影响。最后,搭建实验测试平台,测量了电机的输出特性,并与理论计算值进行对比,对比结果验证了所建立的定动子三维有限元接触模型。

Abstract

The contact and friction of ultrasonic motors is a critical factor affecting motor performance. Contact modeling of ultrasonic motors plays an important role in optimizing motor performance. Analytical method is widely adopted in existing researches on contact problems of standing wave ultrasonic motors, which requires many assumptions and is difficult to reflect actual motor structure and contact state accurately. The focus of this study is to model and analyze the contact characteristics of a standing wave linear ultrasonic motor using finite element method. Firstly, by considering the composite structure of the stator, a three-dimensional finite element model of the stator is established. The vibration response of the stator under applied voltage is simulated, and the solution of the stator displacement is obtained. Subsequently, a three-dimensional finite element model of contact between the stator and slider is proposed taking the structures and contact features of the stator and slider into account. The contact state and the contact pressure between the stator and slider are analyzed based on the proposed model. The influences of drive voltage and preload force on the contact characteristics and motor performances are also investigated. Finally, an experiment platform is built to measure the output performances of the motor. The measured values are compared with the calculated values. The comparison results validate the proposed three-dimensional finite element contact model.

关键词

直线超声波电机 / 驻波 / 有限元模型 / 接触特性

Key words

Linear ultrasonic motor / standing wave / finite element model / contact characteristics

引用本文

导出引用
蒋春容1, 薛鑫岩1, 陆旦宏1, 金龙2. 驻波型直线超声波电机接触特性有限元建模与分析[J]. 振动与冲击, 2024, 43(16): 42-50
JIANG Chunrong1, XUE Xinyan1, LU Danhong1, JIN Long2. Finite element modeling and analysis on contact characteristics of a standing wave linear ultrasonic motor[J]. Journal of Vibration and Shock, 2024, 43(16): 42-50

参考文献

[1] 陆旦宏, 林秋香, 徐健乔, 等. 基于PZT扭振模式的纵-弯耦合模态驻波型直线超声波电机[J]. 振动与冲击, 2021, 40(22): 121-127, 187. LU Danhong, LIN Qiuxiang, XU Jianqiao, et al. Linear ultrasonic motor based on longitudinal-bending coupled modal standing wave excited by the shear vibration model of PZT ceramics[J]. Journal of Vibration and Shock, 2021, 40(22): 121-127, 187. [2] WANG B Q, Zhou Y L, Wang Y C, et al. Three-dimensional intravascular ultrasound imaging using a miniature helical ultrasonic motor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(2): 681-690. [3] 郑炬炬, 孙志峻, 闫鹤, 等. 运用中空超声电机的血管介入手术机器人系统[J]. 振动、测试与诊断, 2021, 41(5): 976-982, 1037-1038. ZHENG Juju, SUN Zhijun, YAN He, et al. Master-slave controlled robotic system based on hollow ultrasonic motor for vascular interventional surgery[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(5): 976-982, 1037-1038. [4] HUTAMA R Y, KHALI M M, MASHIMO T. A millimeter-scale rolling microrobot driven by a micro-geared ultrasonic motor[J]. IEEE Robotics and Automation Letters, 2020, 6(4): 8158-8164. [5] TIAN X Q, LIU Y X, DENG J, et al. A review on piezoelectric ultrasonic motors for the past decade: Classification, operating principle, performance, and future work perspectives[J]. Sensors and Actuators, A: Physical, 2020, 306: 111971. [6] 蒋春容, 周良志, 董晓霄, 等. 大力矩径向驻波型超声波电机有限元分析与实验研究[J]. 振动与冲击, 2020, 39(5): 57-62, 73. JIANG Chunrong, ZHOU Liangzhi, DONG Xiaoxiao, et al. Finite element analysis and tests for a high torque radial standing wave type ultrasonic motor[J]. Journal of Vibration and Shock, 2020, 39(5): 57-62, 73. [7] 李争, 赵亮, 郭鹏, 等. 考虑驱动和负载状态的三自由度超声电机接触模型研究[J]. 振动与冲击, 2021, 40(3): 172-177, 186. LI Zheng, ZHAO Liang, GUO Peng, et al. Contact model of 3-DOF ultrasonic motor considering driving and load conditions[J]. Journal of Vibration and Shock, 2021, 40(3): 172-177, 186. [8] MASHIMO T, TERASHIMA K. Dynamic analysis of an ultrasonic motor using point contact model[J]. Sensors and Actuators A: Physical, 2015, 233: 15-21. [9] JIANG C R, ZHAO Z L, LU D H, et al. Contact analysis and performance evaluation of ring type traveling wave ultrasonic motors based on a surface contact model[J]. Ultrasonics, 2023, 127: 106851. [10] LI J B, LIU S, QU J J, et al. A contact model of traveling-wave ultrasonic motors considering preload and load torque effects[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 56(2): 151-164. [11] 柳 江, 滕杨磊, 王政皓, 等. 超声电机变摩擦三向接触模型的输出特性分析[J]. 电机与控制学报, 2019, 23(9): 115-122. LIU Jiang, TENG Yanglei, WANG Zhenghao, et al. Output characteristic analysis for ultrasonic motors with variable friction spatial contact model[J]. Electric Machines and Control, 2019, 23(9): 115-122. [12] CHEN N, FAN D P. A teeth-discretized electromechanical model of a traveling-wave ultrasonic motor[J]. Mechanical Sciences, 2020, 11(2): 257-266. [13] SHEN S N, LEE H P, LIM S P, et al. Contact mechanics of traveling wave ultrasonic motors[J]. IEEE Transactions on Magnetics, 2013, 49(6): 2634-2637. [14] MOAL P L, JOSEPH E, FERNIOT J C. Mechanical energy transductions in standing wave ultrasonic motors: Analytical modelling and experimental investigations[J]. European Journal of Mechanics, A/Solids, 2000, 19(5): 849-871. [15] 许海, 李志荣. 直线驻波型超声电机的接触分析和堵转推力模型[J]. 微电机, 2010, 43(5): 19-21. XU Hai, LI Zhirong. Analysis on the process of contact of linear ultrasonic motor and the model of stall-thrust[J]. Micromotors, 2010, 43(5): 19-21. [16] SHI Y L, ZHAO C S, ZHANG J H. Contact analysis and modeling of standing wave linear ultrasonic motor[J]. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26(6): 1235-1242. [17] 曲焱炎, 曲建俊, 袭建军. 驻波超声电机摩擦材料ABAQUS特性仿真计算与研究[J]. 电机与控制学报, 2014, 18(12): 95-101. QU Yan-yan, QU Jian-jun, XI Jian-jun. ABAQUS simulation and research of frictional material for standing wave ultrasonic motor[J]. Electric Machines and Control, 2014, 18(12): 95-101. [18] LV Q B, YAO Z Y, LI X. Contact analysis and experimental investigation of a linear ultrasonic motor[J]. Ultrasonics, 2017, 81: 32-38. [19] LI X, CHEN Z W, YAO Z Y. Contact analysis and performance evaluation of standing-wave linear ultrasonic motors via a physics-based contact model[J]. Smart Materials and Structures, 2019, 28(1): 015032. [20] 蒋春容, 董晓霄, 金龙, 等. 径向驻波型超声波电机接触摩擦特性建模与分析. 中国电机工程学报, 2021, 41(17): 6081-6090. JIANG Chunrong, DONG Xiaoxiao, JIN Long, et al. Modeling and analysis of contact friction characteristics in a radial standing wave type ultrasonic motor[J]. Proceedings of the CSEE, 2021, 41(17): 6081-6090. [21] LU D, LIN Q, CHEN B, et al. A single-modal linear ultrasonic motor based on multi vibration modes of PZT ceramics[J]. Ultrasonics, 2020, 107: 106158.

PDF(1825 KB)

133

Accesses

0

Citation

Detail

段落导航
相关文章

/