箱型梁作为工程应用最广泛结构之一,其结构安全裕度需得到清晰表达。箱型梁通常具有纵横加筋结构,冲击载荷下容易发生局部结构屈曲,但是箱型梁后屈曲失稳路径相对稳定,难以采用现有方法确定其失效对应的临界载荷。以简支钢质箱型梁为研究对象,首先研究了非线性有限元建模方法因素的影响,分析不同冲击载荷下箱型梁动态响应的变化规律;其次,根据不同冲击载荷工况计算结果,绘制冲击载荷与箱型梁位移曲线,提出了振幅极值准则和曲率极值准则两种新准则用于箱型梁动态失效临界载荷下限值与上限值的评估;然后,本文将该准则推广应用于三角形、矩形冲击载荷与落锤冲击作用下箱型梁弯曲失效的临界载荷评估,以及不同梁截面、边界条件和载荷工况下箱型梁弯曲失效临界载荷的评估。本文研究结论可为冲击载荷下箱型梁结构安全评估提供基础支撑。
Abstract
Box girder is one of the most widely used structures in engineering. The safety margin of box girder needs to be clearly expressed. As box girders usually have longitudinal and transverse reinforcement structures, they are prone to buckling under impact loads. However, the buckling path of box girders are relatively stable, making it difficult to determine the critical load corresponding to its failure with existing methods. Firstly, the structural dimensions and material parameters of the box girder are introduced. Secondly, based on the calculation results under different impact loads, a vertical displacement-impact load curve of the girder is formed. And a new criterion for evaluating the lower and upper limit of the box girder’s critical load under impact is proposed. Then, the criterion is applied to evaluate the critical failure conditions of box girder under the triangular, rectangular impact load, and drop load. Also, this criterion can be used to evaluate the critical bending load of box girders with different sections and under different boundary conditions. The results of this article may provide basic support for the safety assessment of box girders under impact load.
关键词
箱型梁 /
冲击载荷 /
弯曲失效 /
临界载荷
{{custom_keyword}} /
Key words
box girder;impact load;bending failure /
critical load;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 华家辉,许从昌,林天豪等. 6XXX 铝合金防撞梁总成在动静态载荷下的变形行为[J]. 塑性工程学报,2019,26(6).
HUA Jia-hui, Xu Cong-chang, Lin Tian-hao, et al. Deformation behavior of 6XXX aluminum alloy anti-collision beam assembly under dynamic and static loading[J]. Journal of Plasticity Engineering, 2019, 26(6): 199-205.
[2] 苏建,王秋成. 汽车前纵梁薄壁结构碰撞仿真及优化设计研究[J]. 机电工程,2014,31(4).
SU Jian, WANG Qiu-chen. Crash simulation and structure optimization of a thin-walled front longitudinal beam structure[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(4).
[3] 李政杰, 赵南, 司海龙等. 基于显式算法的船体梁极限强度非线性有限元分析[J]. 舰船科学技术,2015,37(10).
LI Zhen-jie, ZHAO Nan, SI Hai-long, et al. The nonlinear finite element analysis of ship hull girder's ultimate strength by explicit algorithm[J]. Ship Science and Technology, 2015, 37(10).
[4] 李政杰,赵南,祁恩荣等. 典型箱型梁极限强度模型试验分析[J]. 船海工程,2018,47(3): 32-35.
Li Zhen-jie, ZHAO Nan, QI En-rong, et al. Analysis on the Model Test of Ultimate Strength of Typical Box-girder[J]. Ship & Ocean Engineering, 2018, 47(3): 32-35.
[5] 万乐天,吴益辉,李建强.基于ABAQUS的船体箱型梁极限强度分析[J].水雷战与舰船防护,2017,25(04):62-66.
Wan Le-tian, Wu Yi-qun, Li Jian-qiang. Analysis on Ultimate Strength of Ship Hull’s Box Girders Based on ABAQUS[J]. Mine Warfare & Ship Self-defence, 2017,25(04): 62-66.
[6] D. Lee, K. Kim, I. Choi, et. Pressure-resisting capability of the knot area of the primary barrier for a LNG containment system[J]. Ocean Engineering 95(2015): 128-133.
[7] 黄友钦,傅继阳. B-R准则在大跨空间结构风致动力稳定中的应用[J]. 广州大学学报(自然科学版),2012(6): 58-64.
HUANG You-qin, FU Ji-yang. Applicability of B-R criterion in the wind-induced dynamic instability of large span spatial structures[J]. Journal of Guangzhou University (Natural Science Edition), 2012(6): 58-64.
[8] 陈宇峰,杨凌成,王曙光. 大跨空间结构风致动力稳定分析[J]. 南京工业大学学报(自然科学版),2013(4): 91-96.
CHEN Yu-feng, YANG Ling-cheng, WANG Shu-guang, el al. Wind-induced Dynamic Stability Analysis of Large-span Space Structure[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2013(4): 91-96.
[9] 夏劲松,李飞,赵南等. 砰击弯矩下船体梁动态极限强度研究[J]. 舰船科学技术,2022,44(8): 24-29.
XIA Jin-song, Li Fei, ZHAO Nan, et al. Research on Dynamic Ultimate Strength of Hull Girder under Slamming Bending Moment[J]. Ship Science and Technology, 2022, 44(8): 24-29.
[10] 张晓晴,欧智成. 可变形电子元件的非线性动力屈曲行为分析[J]. 爆炸与冲击,2012(4): 362-367.
ZHANG Xiao-qing, Ou Zhi-chen. Analysis on nonlinear dynamic buckling of flexible electronic components[J]. Explosion and Shock Waves, 2012(4): 362-367.
[11] 陈海龙,姚熊亮,祁磊等.舱壁结构在水下爆炸中的动态稳定性研究[J].振动与冲击,2009,28(03): 14-17.
CHEN Hai-long, YAO Xiong-liang, QI Lei, el al. Dynamic Stability of Bulkheads in Underwater Explosion[J]. Journal of Vibration and Shock, 2009, 28(03): 14-17.
[12] H. Less, H. Abramovich. Dynamic buckling of a laminated composite stringer-stiffened cylindrical panel(Article)[J]. Composites Part B: Engineering, 2012. Vol.43(5): 2348-2358.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}